• Title/Summary/Keyword: microstrip array antenna

Search Result 294, Processing Time 0.025 seconds

Wide-Band T-Shaped Microstrip-Fed Twin-Slot Array Antenna

  • Jang, Yong-Woong
    • ETRI Journal
    • /
    • v.23 no.1
    • /
    • pp.33-38
    • /
    • 2001
  • A numerical simulation and an experimental implementation of T-shaped microstrip-fed printed slot array antenna are presented in this paper. The proposed antenna with relative permittivity 4.3 and thickness 1.0mm is analyzed by the finite-difference time-domain (FDTD) method. The dependence of design parameters on the bandwidth characteristics is investigated. The measured bandwidth of twin-slot array antenna is from 1.37 GHz to 2.388 GHz, which is approximately 53.9 % for return loss less than or equal to -10 dB. The bandwidth of twin-slot is about 1.06 % larger than that of single-slot antenna. The measured results are in good agreement with the FDTD results.

  • PDF

Design for Circularly Polarized Microstrip Cross Dipole Array Antenna by Electromagnetic Coupled Technique (전자기적 결합을 이용한 원편파 크로스-다이폴 마이크로스트립 어레이 안테나의 설계)

  • 민경식;임정남;김동철;임학규
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.369-373
    • /
    • 2000
  • This paper describes a design for microstrip EMC cross dipole array antenna with circular polarization. To realize the wide bandwidth and circular polarization, the electromagnetic-coupled cross dipole is used. To obtain the uniform aperture illumination, offset technique for array is adopted. In 20-element array design, the calculated axial ratio and gain are about 0.1 dB and 9.9 dBi at 12GHz, respectively. The frequency characteristics of a fabricated 20-element array antenna are measured. The calculated results agree well with the measured ones.

  • PDF

Rectangular Microstrip Patch Antenna with Semicircular Structure for 5G Applications (5G 응용을 위한 반원형 구조를 가진 사각형 마이크로스트립 패치 안테나)

  • Kim, Yeong-Jin;Maharjan, Janam;Choi, Dong-You
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1269-1274
    • /
    • 2019
  • The paper presents a design of simple four-element microstrip-patch array antenna that is suitable for 5G applications. The proposed array consists of four rectangular microstrip patch elements with semicircular etches made on both sides of each elements. The antenna is fed using the combination of series and corporate feeding networks. The size of the ground is also changed to improve the antenna frequency. Finally, yagi elements are also added to improve the directive gain of the antenna. The presented microstrip patch array is able to achieve wide frequency bandwidth of 21.95-31.86 GHz. The antenna has also attained gain of 9.7 dB at 28 GHz and has maintained high gain and high directivity throughout the frequency band. The proposed array antenna fed by series-corporate feeding network, with low profile and simple structure is a good candidate for 5G applications.

The Design of $4{\times}4$ Microstrip Patch Array Antenna of K-Band for the High Gain (고이득 구현을 위한 K-밴드 $4{\times}4$ 마이크로스트립 패치 어레이 안테나의 설계)

  • Lee Ha-Young;Braunstein Jeffrey;Kim Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.193-196
    • /
    • 2006
  • In this paper, two $4{\times}4$ rectangular patch array antennas operated at 20 GHz are implemented for the satellite communication. Two $2{\times}2$ sub-arrays are designed and used for the design of $4{\times}4$ patch array. The sixteen patch antennas and microstrip feeding line are printed on the single-layered substrate. The spacing between the array elements is chosen to be $0.736{\lambda}$. The HPBW(Half Power Beam Width) of the $4{\times}4$ microstrip patch array is 17.01 degrees in the E-plane and 17.71 degrees in the H-plane with a gain of 11.6dB in the experimental results. The HPBW of the recessed $4{\times}4$ microstrip patch array is 18.66 degrees in E-plane and 17.12 degrees in the H-plane with a gain of 12.55dB in the experimental results.

  • PDF

Design of Modified H-slot Aperture-coupled Circular Polarization Microstrip Array Antenna (변형된 H형 슬롯 개구결합 원형편파 마이크로스트립 배열안테나 설계)

  • Park, Ki-dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1363-1368
    • /
    • 2015
  • Aperture-coupled circular polarization microstrip array antenna is proposed in this paper. The proposed antenna is useful for 2.4GHz ISM band and its aperture shape is a modified H-slot. The optimal design parameters for the antenna structure is found by using electromagnetic analysis tool HFSS repeatedly. The HFSS simulation results, such as return loss, axial ratio, radiation pattern and gain of the proposed array antenna are compared with results of the single antenna. It is able to verify that the proposed array antenna is valuable enough to be used in various applications as well as 2.4GHz ISM band.

Design of K-band Array Antenna for Satellite Communications (위성통신을 위한 K- 벤드용 배열 안테나 설계)

  • Lee, Hyeon-Jin;Kim, Hyun-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.167-171
    • /
    • 2011
  • In this paper, $2{\times}4$ microstrip patch antenna are proposed to implement K-band satellite communications. The microstrip feed line are inset into the radiation patch to match input impedance. Also the same current in each elements are excited by Kirchhoff's low. The elements distance of proposed array antenna are optimized $0.8{\lambda}_g$ to minimize a mutual coupling and maximize a gain. A power divider network are employed to distribute T-junction divider. As result, the proposed antenna get gain of 14[dBi] at 10.525[GHz].

Study on the Array type antenna of 2×2 (2×2 배열 구조 안테나 특성 연구)

  • Park, Yong-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.549-554
    • /
    • 2017
  • In this paper, we studied the design and fabrication of $2{\times}2$ microstrip array antenna at around 5 GHz band.. To improve of frequency properties of antenna, feed microstrip patch antenna was simulated by HFSS(High Frequency Structure Simulator). A $2{\times}2$ array antenna was designed and fabricated by photolithograph on an FR4 substrate (dielectric constant of 4.4 and thickness of 1.6 mm). The fabricated $2{\times}2$ array antenna showed a center frequency, the minimum return loss and bandwidth were 5.3 GHz, -24dB, and 390MHz, respectively.

The design of series-fed microstrip array antenna using subarray at Q band (서브 어레이를 이용한 Q 대역 직렬 급전 마이크로스트립 배열 안테나의 설계)

  • Heo, Johns;Oh, Soon-Soo;Sung, Young-Jae;Kim, Young-Sik
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.413-417
    • /
    • 2003
  • In this paper, a series-fed microstrip array antenna utilized a sub-array with a waveguide slot feeding is presented. This sub-array can reduce the feed loss compared with a full microstrip feed network. The sub-array has been designed both for a broad reflection bandwidth and a flat gain bandwidth from 40.5 GHz to 43.5 GHz. The $24{\times}24$ array antenna has been implemented with the maximum gain of 32.4 dBi.

  • PDF

Design of Microstrip Array Antenna for Satellite Reception (위성수신용 마이크로스트립 어레이 안테나 설계)

  • Kim, Jang-Wook;Jeon, Joo-Seong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.10
    • /
    • pp.71-79
    • /
    • 2014
  • In this paper, the microstrip array antenna is studied to replace the parabolic antenna in the direct satellite reception. A microstrip array antenna has been used in extremely limited area, but if it is applied to practical life like a direct satellite reception antenna, we expect that it will be used in various way. First of all, if we use a microstrip array antenna for a direct satellite reception antenna, it should be guaranteed characteristics of broadband frequency. Therefore, the goal of this paper is designing technique an antenna which guarantees broadband frequency band for a direct satellite reception. In this paper, the proposed microstrip antenna is fed by orthogonal two feed lines to a rectangular patch and a sequentially rotated feeding technique is designed proposed for a good axial ratio in broadband frequency band. The rectangular patch is designed to satellite reception band, and the width and length are W=L=8.9 mm ($0.352{\lambda}o$) respectively. The antenna's ground plane has dimensions of $250{\times}250mm$. The experimental results verify that the proposed antenna had the axial ratio of above 1dB broader than that of the conventional feeding antenna. In order to verify the performance, a $8{\times}8$ array having two pairs was fabricated and tested. The maximum gain is 20.8 dB, the sidelobe level confirm less than -10 dB. It is verified by link budget calculation that C/N=6.7 dB can be obtained for domestic use if this proposed antenna is used in Koreasat reception system.

A Study on the Cylindrical Microstrip Antenna for ISM Band Applications (ISM 대역용 원통형 마이크로스트립 안테나에 관한 연구)

  • Jeong, Don-Ki;Choi, Byoung-Ha
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.4
    • /
    • pp.326-332
    • /
    • 2006
  • In this study, the antenna was proposed for the omni-directional characteristic in horizontal plane. Therefore we proposed $1{\times}4$ microstrip patch array on cylindrical surface for studying microstrip patch antennas. This antenna is designed for 2.45GHz ISM band and applications. This antenna can be applied to the base station of wireless microphone and access point of wireless LAN. The length and width of the patch antenna and the width of the feed line were calculated by using the theory of microstrip patch antenna, by using the both the 2.5D and 3D EM simulators the optimized antenna characteristics are obtained. From result of measured, antenna's impedance of coaxial waveguide port was 51.915-j3.688 ${\Omega}$, the return loss was -31dB and VSWR was 1.081.

  • PDF