• Title/Summary/Keyword: microspore isolation

Search Result 5, Processing Time 0.02 seconds

Microspore Division and Plant Regeneration from Shed Pollen Culture in Rice

  • Kim, Hyun-Soon;Kang, Hyeon-Jung;Lee, Young-Tae;Lee, Seung-Yeob;Nam, Jeong-Kwon;Kim, Tae-Soo;Rha, Eui-Shik;Jin, Il-Doo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.1
    • /
    • pp.62-67
    • /
    • 2002
  • An efficient system of rice microspore culture could contribute to the production of genetically modified rice. The microspores were isolated by mechanical or shed methods. The number of microspores per 100 anthers isolated at uninucleate stage was higher than (or similar to) those at binucleate stage in isolation method with pestle or spatular, but microspore divisions were not easily observed on both stages. On the other hand, pollen division in shed pollen culture was observed more frequently at uninuclear than at binuclear stage. Cold pretreatment at 1$0^{\circ}C$ for 10 days resulted in the best multicellular division to produce microcalli at 12.5% efficiency in shed microspores. Heat shock at 33$^{\circ}C$ for one hour before or after pollen shedding enhanced cell division and callus formation. Out of twelve green regenerants, two were haploids and ten were diploids based on the chromosome analysis of root tips. The size of stoma was 12$^{m}$ m in haploids and 15 ${\mu}{\textrm}{m}$ in diploids determined by scanning electron microscope (SEM).

Influence of donor plant growth condition, microspore isolation method, culture medium, and light culture on the production of embryos in microspore culture of hot pepper (Capsicum annuum L.) (고추의 소포자 배양 시 모식물의 생육조건, 소포자 나출 방법, 치상배지 및 광배양이 배의 발생에 미치는 영향)

  • Lee, Jong-Suk;Park, Eun-Joon;Kim, Moon-Za
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.363-373
    • /
    • 2007
  • To establish an efficient and reliable microspore culture system for pepper (Capsicum annuum L.), the effect of light intensity used for donor plant's growth, microspore isolation methods, the composition of culture medium, and culture period in light on the production of embryos were investigated. The viability of microspores taken from the plants grown under the light intensity of 10,000 lux was almost same as that from the lower (5,500 lux) light intensity, and the embryo induction and development were a bit higher when donor plants were grown under the lower light intensity. This result implies that lower light intensity does not interfere with the embryo induction and development. However, it was very difficult to prepare microspores for culture since only a small number of flower buds could be harvested from plants grown under the light intensity of 5,500 lux. Microspore isolation methods greatly affected microspores viability; that is, when microspores were isolated by blending rather than maceration, the greater number of viable microspores were easily generated (about 13 times). Among media used for microspores culture in this study, MN medium was most efficient for embryo induction and development. Total number of embryos and the number of cotyledonary embryos were highest when microspores were cultured in dark for 4 weeks, and then in light for one week. These results will be provide valuable information to set up efficient microspore culture system of hot pepper with a high frequency of embryo production, which are applicable to gene transformation and mutagenesis.

Stress as a Trigger of Pollen Embryogenesis

  • Zarsky, Viktor;Soukupova, Hana
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.5
    • /
    • pp.411-413
    • /
    • 2000
  • The ability of microspores or young pollen grains (male gametophytes) to undergo developmetal switch to embryogenic (sporophytic) pathway exemplifies the concept of totipotency as applied to haploid posmeiotic cells. As a first step pollen is devoid of positional information provided in situ by the intact anther - by isolation and cultivation in vitro in artificial media. This is inevitably accompanied by some degree of stress response in microspore/pollen. It has been shown in both monocots and dicots that intentional stress treatment (mostly starvation or heat shock) greatly stimulates embryo induction rate. Using transgenic sHSP antisense Nicotiana tabacum we show that expression of small heat shock proteins is an integral part of successful embryo and later haploid plant production from pollen grains. Our recently published data show that sHSP chaperone function is optimal in the absence of ATP.

  • PDF

Development of Clubroot Resistant Doubled-Haploid Inbred Lines in Kimchi Cabbage (Chinese Cabbage) (Brassica rapa L.)

  • Park, Suhyoung;Jang, Hayoung;Park, Min Young
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.37-37
    • /
    • 2015
  • Kimchi cabbage (Chinese cabbage), radish and Cabbage are major Brassicaceae vegetables in Korea. Especially, we can easily develop whole plant from one microspore in Kimchi cabbage. To develop clubroot resistant doubled-haploid (DH) inbred lines, we pollinated a clubroot resistant turnip of 'IT 033820' with a Kimchi cabbage (Chinese cabbage) inbred of 'BP 079'. More than 85 DH inbred lines were developed from this combination. We screened about 400 materials including these DH inbred lines, commercial cultivars and breeding materials during 3 years using hydroponic system after inoculating single spore isolation race 4(SSI-04) inoculate. One inbred line derived from this combination selected as clubroot resistant and registered as 'Wonkyo20036ho'. We inoculated 26 DH inbred lines derived from 'Zoong-baek 2ho' using SSI-4, the percent of resistant plants varied from 0 to 83%. However the horticultural traits of highly resistant DH inbred line was poor. Thus we selected one DH line showing 77% resistant with yellow inner leaf and maid good head, was registered as 'Wonkyo20034ho'. Another DH inbred line derived from Korean variety of 'Wol-dong' showing 86% resistant was registered as 'Wonkyo20037ho'. Other DH inbred lines were derived from Chinese cultivar of 'Choon-hi-go-hang-wang' and 'Hwang-shim-zo48' showed 80 and 71% resistant, respectively, was also selected for registration. Even though DH inbred lines derived from turnip showed highly resistant to SSI-04 and provincial inoculate, they showed poor characteristics in horticultural traits. However, commercial seed companies showed interesting for adapting these DH inbred lines in commercial breeding.

  • PDF

STUDIES ON THE TISSUE CULTURE OF PANAX GINSENG

  • Harn C
    • Proceedings of the Ginseng society Conference
    • /
    • 1974.09a
    • /
    • pp.9-22
    • /
    • 1974
  • Unlike the tissue culture in animals and human being, in higher plants various parts of the plant are cultured for varied purposes, and they are named variously depending on which parts are used as explants or what purposes they are cultured for. Followings are some of the names of culture used frequently: organ culture, tissue culture, callus culture, single cell culture, meristem culture, mericlone culture, ovary culture, ovule culture, embryo culture, endosperm culture, anther culture, pollen culture, protoplast culture, etc.. As the names of the culture indicate, in some kinds of culture the explants used for culture are actually not tissues, but organs, single cells, or protoplasts. It seems, however, convenient to call all of the above-mentioned cultures grossly as tissue culture. Several kinds of tissue culture were attempted using Panax ginseng as material and some of the results were summarized below. 1. Callus culture After dormancy of the sed was broken, whole embryo or parts (hypocotyl, cotyledon and epicotyl) of partly grown embryo were cultured in the media supplemented with growth regulators. Rapid swelling occurred in a few weeks, but most of the swelling was observed only in the basal part of epicotyl, changes in the other parts of embryo appearing in much later stages. The swelling or increase in size, however, was resulted not from the divisions of cells, but from the mere expansion of cell. Real calli were formed about two months after inoculation of explants. Callus tissues developed from cortex, pith, and vascular bundle in the cases of hypo- and epicotyl, from mesophyl tissue in the case of cotyledon. Shoots developed more easily from cotyledons regardless of whether they are detached from or attached to the embryo proper. 2. Culture in the Knudson C medium When cotyledons, detached from or attached to the embryo proper, were cultured in the growth regulator-free Knudson C medium comprision only several kinds of mineral compounds and sucrose, shoot primordium or callus developed profusely and finally plantlets were produced directly from shoot primordium or indirectly through callus. In this medium epidermal cells as well as mesophyl cells of the cotyledon became meristematic and divided, changing into multinucleate cells or multicellular bodies, developing eventually into either shoot primordia or calli. 3. Anther culture Anthers were cultured in the media supplemented with various growth regulators applied singly or in combinations. Callus was formed mostly in the connective tissue of anther. Cells of anther wall layers changed in appearance, but no division occurred. Microspores of all stages in development were not changed, ruling out the possibility that microspore-originated callus might be formed. 4. Isolation of protoplast Protoplasts were isolated from young root, leaf, and epicotyl, using 0.7M D-mannitols as osmoticum and using macerozyme and cellulase respectively for maceration and digestion of the cell wall. Production in large number of naked intact protoplast was rather difficult as compared with other plant species. Fusion of protoplasts occurred infrequently mainly due to the fewer number of naked protoplasts in the solution.

  • PDF