• 제목/요약/키워드: microsphere

검색결과 223건 처리시간 0.029초

설파디아진은의 방출제어를 위한 알지네이트-키토산 미립구의 제조 및 특성 (Preparation and Characterization of Alginate-Chitosan Microsphere for Controlled Delivery of Silver Sulfadiazine)

  • 조애리
    • Journal of Pharmaceutical Investigation
    • /
    • 제31권2호
    • /
    • pp.101-106
    • /
    • 2001
  • Alginate-chitosan (anion-cationic polymeric complex) was prepared to control the release rate of silver sulfadiazine (AgSD). Na-alginate (2%) solution containing AgSD was gelled in $CaCl_2$ solution. The gel beads formed were immediately encapsulated with chitosan (CS). The gel matrix and membrane were then reinforced with chondroitin-6-sulfate (Ch6S). Release rate of AgSD from the gel matrix was investigated by placing alginate beads in the sac of cellulose membrane simmered in HEPES-buffer solution. The concentration of AgSD released was analyzed by UV at 264 nm. Incorporation capacity of AgSD in Ca-alginate gel was more than 90%. Alginate-Ch6S-CS could control the release rate of AgSD. The amount of AgSD release was dependent on the AgSD loading dose. Incorporation of tripolyphosphate (polyanionic crosslinker) onto the alginate-Ch6S-CS bead increased the release rate of AgSD. Collagen-coating had no influence on the AgSD release rate. Alginate-Ch6S-CS beads with a sufficiently high AgSD encapsulation were capable of controlling the release of the drug over 10 days. In summary, alginate-Ch6S-CS beads could be used as a sustained delivery for AgSD and provide local targeting with low silver toxicity and patient discomfort.

  • PDF

Sol-gel 공정을 이용한 UO2 kernel 제조에서 공정변수가 입자특성에 미치는 영향 (Effects of Process Parameters on the Powder Characteristics of Uranium Oxide Kernel Prepared by Sol-gel Process)

  • 김연구;정경채;오승철;서동수;조문성
    • 한국분말재료학회지
    • /
    • 제16권4호
    • /
    • pp.254-261
    • /
    • 2009
  • In this study, we investigated the unit process parameters in spherical $UO_2$ kernel preparation. Nearly perfect spherical $UO_3$ microspheres were obtained from the 0.6M of U-concentration in the broth solution, and the microstructure of the $UO_2$ kernel appeared the good results in the calcining, reducing, and sintering processes. For good sphericity, high density, suitable microstructure, and no-crack final $UO_2$ microspheres, the temperature control range in calcination process was $300{\sim}450^{\circ}C$, and the microstructure, the pore structure, and the density of $UO_2$ kernel could be controlled in this temperature range. Also, the concentration changes of the ageing solution in aging step were not effective factor in the gelation of the liquid droplets, but the temperature change of the ageing solution was very sensitive for the final ADU gel particles.

Preparation of Mucoadhesive Chitosan-Poly(acrylic acid) Microspheres by Interpolymer Complexation and Solvent Evaporation Method I

  • Cho, Sang-Min;Choi, Hoo-Kyun
    • Journal of Pharmaceutical Investigation
    • /
    • 제35권2호
    • /
    • pp.95-99
    • /
    • 2005
  • Mucoadhesive microspheres were prepared by interpolymer complexation of chitosan with poly(acrylic acid) (PAA) and solvent evaporation method to increase gastric residence time. The chitosan-PAA complex formation was confirmed by differential scanning calorimetry and swelling study. The DSC thermogram of chitosan-PAA microspheres showed two exothermic peaks for the decomposition of chitosan and PAA. The swelling ratio of the chitosan-PAA microspheres was dependent on the pH of the medium. The swelling ratio was higher at pH 2.0 than at neutral pH. The results indicated that the microspheres were formed by electrostatic interaction between the carboxyl groups of PAA and the amine groups of chitosan. The effect of various process parameters on the formation and morphology of microspheres was investigated. The best microspheres were obtained when 1.5% of the high molecular weight chitosan and 0.3% of PAA were used as an internal phase. The optimum internal phase volume was 7%. The com oil was used as the external phase of emulsion, and span 80 was used as the surfactant. The prepared microspheres had spherical shape.

로라제팜을 함유한 poly(D,L-lactic acid) 마이크로스피어 개발 (Development of Poly(D,L-lactic acid) Microspheres Containing Lorazepam)

  • 최한곤;유봉규;이종달;김정애;권태협;우종수;용철순
    • Journal of Pharmaceutical Investigation
    • /
    • 제36권3호
    • /
    • pp.175-184
    • /
    • 2006
  • Poly(D,L-lacic acid)(PLA) microshperes containing loazepam were prepared by a solvent-emulsion evaporation method and their release patterns were investigated in vitro. Various batches of microspheres with different size and drug content were obtained by changing the ratio of lorazepam to PLA, PLA concentration in the dispersed phase and stirring rate. Rod-like lorazepam crystals on microsphere surface, which were released rapidly and could act as a loading dose, were observed with increasing drug content. The release rate was increased with increase in drug contents and decrease in the molecular weight of PLA. The release rate of lorazepam for long-acting injectable delivery system in vitro, which would aid in Predicting in vivo release Profile, could be controlled by properly optimizing various factors affecting characteristics of microspheres.

Photocurrent Properties of TiO2 Nanorods Grown on FTO by Hydrothermal Method

  • Kim, Hyun;Yang, Bee Lyong
    • 한국세라믹학회지
    • /
    • 제52권6호
    • /
    • pp.531-534
    • /
    • 2015
  • In this work, we undertake a comparative study of the crystallographic microstructures and photo-catalytic properties of rutile $TiO_2$ nanorods grown on FTO facing up and down by a hydrothermal method. An analysis of the fine structures showed that $TiO_2$ nanorods grown on FTO facing up were mixed with sea urchin and microsphere. These structures induced a vertical orientation of the nanorods on FTO. The saturated photocurrent densities of the $TiO_2$ nanorods grown both up and down were $1.5mA/cm^2$ in the former case, the IPCE was increased to 10% at 300~350 nm. The onset potential (${\fallingdotseq}$ flat band potential) of the nanorods grown on FTO facing up is negatively shifted to a value of -0.31 V. This is caused by an increase in the surface state, in this case the number of oxygen vacancies, and by the formation of $Ti^{3+}$. Therefore, the FTO facing direction is considered as a critical factor during the hydrothermal reaction for $TiO_2$ growth so as to develop an efficient photo-catalytic system.

Si 결합 다공성 탄화규소의 미세구조 및 통기도 특성 -카본 함량 변화 중심 (Microstructure and Permeability Property of Si Bonded Porous SiC with Variations in the Carbon Content)

  • 송인혁;박미정;김해두;김영욱;배지수
    • 한국세라믹학회지
    • /
    • 제47권6호
    • /
    • pp.546-552
    • /
    • 2010
  • The achievement of high gas permeability is a key factor in the development of porous SiC ceramics for applications of hot gas filter, vacuum chuck, and air spindle. However, few reports on the gas permeability of porous SiC ceramics can be found in the literature. In this paper, porous SiC ceramics were fabricated at temperatures ranging from $1600^{\circ}C$ to $1800^{\circ}C$ using the mixing powders of SiC, silicon, carbon and boron as starting materials. In some samples, expanded hollow microspheres as a pore former were used to make a cellular pore structure. It was possible to produce Si bonded SiC ceramics with porosities ranging from 42% to 55%. The maximum bending strength was 58MPa for the carbon content of 0.2 wt% and sintering temperature of $1700^{\circ}C$. The increase of air permeability was accelerated by addition of hollow microsphere as a pore former.

Enhanced Antigen Delivery Systems Using Biodegradable PLGA Microspheres for Single Step Immunization

  • Cho, Seong-Wan;Kim, Young-Kwon
    • 대한의생명과학회지
    • /
    • 제12권4호
    • /
    • pp.443-450
    • /
    • 2006
  • To demonstrate their possibilities as an enhanced vaccine delivery system, protein-loaded Poly lactide glycolide copolymer (PLGA) microspheres were prepared with different physical characteristics. Ethyl acetate (EA) solvent extraction process was employed to prepare microspheres and the effects of process parameters on drug release properties were evaluated. The biodeuadability of microspheres was also evaluated by the pH change and GPC (Gel permeation chromatography). Primary IgG antibody responses in BALB/c mice were compared with protein saline solutions as negative controls and adsorbed alum suspensions as positive controls after single subcutaneous injection for in vivo studies. The microspheres showed a erosion with a highly porous structure and did not keep their spherical shape at 45 days and this result could be confirmed by GPC. In vitro release of proteinous drug showed initial burst effect in all batches of microspheres, followed by gradual release over the next 4 weeks. PLGA microspheres were degraded until 45 days and the secondary structure of OVA was not affected by the preparation method. Enzyme-linked immunosorbent assays demonstrated that the single subcutaneous administrations of OVA-loaded PLGA microspheres induced enhanced serum IgG antibody response in comparison to negative and positive controls. These results demonstrated that microspheres providing the controlled release of antigens might be useful in advanced vaccine formulations for the parenteral carrier system.

  • PDF

Use of Chitosan-TPP microsphere as a matrix for the encapsulation of somatic embryos of Capsicum annum var. grossum

  • Senarath, Wtpsk;Stevens, W.F.;Lee, Kui-Jae;Rehman, S.;Lee, Wang-Hyu
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2002년도 제9차 국제심포지움 및 추계정기학술발표회
    • /
    • pp.52-52
    • /
    • 2002
  • Chitosan is a key compound of shrimp waste. It is a biopolymer, which is widely used in the field of medical Sciences. Chitosan-TPP (Tripolyphosphate) complex has more or less similar physical properties as Ca-alginate which can be used for the production of synthetic seeds. Possibility of the use of Chitosan-TPP complex as a matrix for encapsulation of somatic embryos was tested against the Ca-alginate complex (2.5w/v Na-alginate, 100mM CaCl2 at pH 5.5). Somatic embryos grown in the induction medium (IM) were drawn into the viscous chitosan solution (1%) and mixed well by inverting the tube carefully. Then the mixture was dropped at regular intervals into the tripolyphosphate (TPP) solution kept on a magnetic stirrer for bead formation. Synthetic seeds formed were washed and transferred into the incubation medium, then allowed either to air-dry or freeze-dry.(중략)

  • PDF

Cross-Linked Starch Microspheres: Effect of Cross-Linking Condition on the Microsphere Characteristics

  • Atyabi, Fatemeh;Manoochehri, Saeed;Moghadam, Shadi H.;Dinarvand, Rassoul
    • Archives of Pharmacal Research
    • /
    • 제29권12호
    • /
    • pp.1179-1186
    • /
    • 2006
  • Cross-linked starch microspheres were prepared using different kinds of cross-linking agents. The influence of several parameters on morphology, size, swelling ratio and drug release rate from these microspheres were evaluated. These parameters included cross-linker type, concentration and the duration of cross-linking reaction. Microspheres cross-linked with glutaraldehyde had smooth surface compared with those prepared with epichlorhydrine or formaldehyde. The particle size increased with increasing the cross-linking time and increasing the drug loading. Swelling ratio of the particles was a function of cross-linker type but not the concentration or time of cross-linking. Drug release from starch microspheres was measured in phosphate buffer and also in phosphate buffer containing a-amylase. Results showed that microspheres cross-linked with epichlorhydrine released all their drug content in the first 30 minutes. However, cross-linking of the starch microspheres with glutaraldehyde or formaldehyde decreased drug release rate. SEM and drug release studies showed that cross-linked starch microspheres were susceptible to the enzymatic degradation under the influence of alpha-amylase. Changing the enzyme concentration from 5000 to 10,000 IU/L, increased drug release rate but higher concentration of enzyme (20,000 IU/L) caused no more acceleration.

Preparation and In Vivo Evaluation of Huperzine A-Loaded PLGA Microspheres

  • FU XU-DONG;GAO YONG-LIANG;PING QI-LENG;Ren Tang
    • Archives of Pharmacal Research
    • /
    • 제28권9호
    • /
    • pp.1092-1096
    • /
    • 2005
  • Huperzine A-loaded microspheres composed of poly(D,L-lactide-co-glycolide) were prepared by an O/w emulsion solvent evaporation method. The characterization of the microspheres such as drug loading, size, shape and release profile was described. The in vitro release in the initial 7 days was nearly linear with $10\%$ released per day. Thereafter drug release rate became slow gradually and about $90\%$ drug released at day 21. The in vitro release rate determined by dialysis bag method had a good correlation with the in vivo release rate. Huperzine A aqueous solution was intramuscularly injected (i.m.) at 0.4mg/kg and microspheres were intra­muscularly injected at 8.4 mg eq huperzine A/kg in rats. The maxium plasma concentration $(C_{max})$ after i.m. microspheres was only $32\%$ of that after i.m. solution. Drug in plasma could be detectd until day 14 and about $5\%$ of administered dose was residued at the injection site at day 14. The relative bioavailability of huperzine A microspheres over a period of 14 days was $94.7\%$. Inhibition of acyecholinesterase activity (AchE) in rat's cortex, hippocampus and striatum could sustain for about 14 days. In conclusion, huperzine A-loaded microspheres possessed a prolonged and complete drug release with significant inhibition of AchE for 2 weeks in rats.