• Title/Summary/Keyword: microshperes

Search Result 3, Processing Time 0.016 seconds

Characteristics of Tetanus Toxoid Loaded in Biodegradable Microparticles (파상풍 톡소이드를 함유한 생체분해성 미립구의 특성)

  • 김지윤;김수남;백선영;이명숙;민홍기;홍성화
    • YAKHAK HOEJI
    • /
    • v.44 no.4
    • /
    • pp.293-299
    • /
    • 2000
  • Biodegradable microspheres made from poly-lactide-co-glycolide polymers have been considered as a new delivery system for single-dose vaccine. Purified tetanus toxoid (TT) was encapsulated in poly-lactide(PLA) and poly-lactide-co-glycolide (PLGA) microparticles using a solvent evaporation method in a multiple emulsion system (water-in oil-in water). The morphology of 77-loaded microparticles was spherical and the suface of them was smooth. The particle size was in a range of 2-10. Protein loading efficiency was 68-97.8%. PLGA (85:15) microparticle showed the highest efficiency. Protein release pattern was influenced by polymer molecular weight and composition. The release rate of PLA(Mw 100,000) microsphere was higher than any other microspheres. In consequence of the hydrolysis of PLGA(50:50) microspheres, environmental pH decreased from 7.4 to 5.0. The PLA, PLGA (75:25) and PLGA (85:15) microshperes showed no significant pH change. The antigenicity or n in microshperes was assayed by indirect sandwich ELISA using equine polyclonal tetanus antitoxin for capture antibody and human polyclonal tetanus antitoxin for primary antibody. The antigenicity of TT in PLA (Mw 100,000), PLGA(50:50, Mw 100,000) and PLGA (75:25, Mw 73,300) after 30 days incubation showed 54, 40.9 and 76.7%, respectively.

  • PDF

Recent Research Trend in Biomaterials for Effective Cancer Immunotherapy (효과적인 암 면역치료를 위한 생체재료 연구동향)

  • Han, Jun-Hyeok;Go, Eun-Jin;Kim, Joon-Kyu;Park, Wooram
    • Prospectives of Industrial Chemistry
    • /
    • v.22 no.6
    • /
    • pp.2-12
    • /
    • 2019
  • 최근 암 면역치료는 임상연구에서 긍정적인 결과를 보이고 있으며 암 질환의 표준치료법으로 자리 잡아가고 있다. 암 면역치료는 암의 재발과 전이를 획기적으로 개선시킬 수 있다는 이점이 있다. 하지만 전체 암 환자의 15~20%에서만 치료 효과를 보이고 심각한 부작용을 유발할 수 있다는 임상적 한계가 있다. 이러한 문제점들을 개선하기 위해서 기존에 약물전달 또는 조직공학 분야에서 활용되었던 생체재료를 도입하여 면역치료의 효과를 개선하고 부작용은 줄이려는 시도가 활발하다. 본 기고문에서는 효율적인 암 면역치료를 위한 생체재료(나노입자, 리포좀, 미립구, 및 하이드로젤)에 관한 최신 연구동향을 다루고자 한다. 고기능성 생체재료 개발과 종양 면역학 분야의 깊은 이해는 효과적인 암 면역치료제를 개발하는데 있어서 매우 중요하다.

Development of Poly(D,L-lactic acid) Microspheres Containing Lorazepam (로라제팜을 함유한 poly(D,L-lactic acid) 마이크로스피어 개발)

  • Choi, Han-Gon;Yoo, Bong-Kyu;Rhee, Jong-Dal;Kim, Jung-Ae;Kwon, Tae-Hyub;Woo, Jong-Soo;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.3
    • /
    • pp.175-184
    • /
    • 2006
  • Poly(D,L-lacic acid)(PLA) microshperes containing loazepam were prepared by a solvent-emulsion evaporation method and their release patterns were investigated in vitro. Various batches of microspheres with different size and drug content were obtained by changing the ratio of lorazepam to PLA, PLA concentration in the dispersed phase and stirring rate. Rod-like lorazepam crystals on microsphere surface, which were released rapidly and could act as a loading dose, were observed with increasing drug content. The release rate was increased with increase in drug contents and decrease in the molecular weight of PLA. The release rate of lorazepam for long-acting injectable delivery system in vitro, which would aid in Predicting in vivo release Profile, could be controlled by properly optimizing various factors affecting characteristics of microspheres.