• Title/Summary/Keyword: microplastic release

Search Result 3, Processing Time 0.017 seconds

Microplastic release from damaged commercial teabags

  • Kim, Sion;Jo, Eun Ha;Choi, Soohoon
    • Membrane and Water Treatment
    • /
    • v.13 no.1
    • /
    • pp.21-28
    • /
    • 2022
  • The use of plastics in our everyday lives have been drastically increased during the last few decades. However with the usage of commercial plastic products there is a possibility of microplastic consumption, due to the fragmentation of the products. Additionally, the potential for microplastic ingestion may also be increased by using damaged products. Hence, the current study was conducted to understand the potential release of micro/nano plastics and organic matter from damaged teabags. To check the leakage tendency, the amount of damage to the tea bags from 1-10 cm were tested along with temperatures of 25-70℃, and exposure times from 5 min to 1 hr was tested. Release of fibrous micro/nanoplastics, and organic leachate from the damaged teabags were observed to understand the outflow conditions. Results showed that with the increased degree of damage, temperature, and exposure time increased the release of fiberous matter, where the increase of temperature, and exposure time increased organic leachate. Additional analysis confirmed the leachate of nylon polymers into the heated water.

Analysis of microplastics released from textiles according to filter pore size and fabric weight during washing (세탁 중 세탁물 중량과 여과 기공 크기에 따른 미세플라스틱 분석)

  • Choi, Sola;Kwon, MiYeon;Park, Myung-Ja;Kim, Juhea
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.23 no.1
    • /
    • pp.37-45
    • /
    • 2021
  • This study observed the release of microplastics according to washing weights and filtering conditions, measured microplastic generation rates, fiber lengths, and fiber diameters. This study attempted to present data for the development of filters that decrease microplastic generation. For test samples, polyester piled knit fabric (cut-pile) was selected, which currently has the highest amount of consumption in the clothing industry, but can easily cause marine pollution because of its low biodegradability. For test equipment, a drum washer was used and microplastics were collected using two filter pore sizes, 5 ㎛ and 20-25 ㎛. Microplastic fibers weights and lengths were measured. The results of the experiment showed the following: 1) The release of microplastics differed according to the fabric weights and washing process; 2) washing fabric weights showed a differences in the collection amount according to the filter pore size (5 ㎛, 20-25 ㎛); 3) observations of differences in the lengths of the microplastics that occur during the washing process by filter pore size were made. Fibers with shorter lengths appeared with filter pore sizes of 5㎛ in comparison to filter pore sizes of 20-25㎛. The results from this study on microplastic generation by fabric during washing, demonstrated the following conclusions that can be used to reduce the release of microplastics. First, the release of microplastics according to fabric weights and washing courses are affected by physical force. Therefore, it is necessary to reduce the amount of physical force due to water flow, increase the fabric weight, or wash the material in low temperatures. Second, in the manufacturing of washing machines, microplastic filtration can be promoted or legislatation supporting microplastic filtration can be introduced.

Dissolved Organic Matter (DOM) Leaching from Microplastics under UV-Irradiation and Its Fluorescence P roperties: Comparison with Natural P articles (UV 광풍화에 의한 미세플라스틱 기원 유기물 용출과 형광 특성: 자연유래 유기성 입자와의 비교)

  • Choi, Na Eun;Lee, Yun Kyung;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.2
    • /
    • pp.72-81
    • /
    • 2022
  • Numerous studies have investigated the occurrence and fate of microplastics in the environment; however, only limited effort has been devoted to exploring the characteristics of dissolved organic matter (DOM) leached from microplastics. In microplastic (MP)-contaminated environment, MPs are typically mixed with naturally-occurring particles, which interferes with their detection in the environment. Thus, it is necessary to distinguish between the DOM leached from MPs and those leached from natural particles and also to characterize their properties. This study investigated DOM leaching behavior from MPs (polystyrene: PS, polyvinylchloride: PVC) and natural particulates (forest soil: FS, litter leaves: LL) under light, which is considered one of the main weathering processes that affect MPs in the environment. The leached DOM concentrations and fluorescence characteristics were compared under dark versus light conditions. Regardless of the origins, UV light promoted DOM release from all the particulates. More DOM was released from natural particles than from MPs under both conditions. However, the effect of promoting DOM release by UV was more pronounced for MPs than for natural particles. It was observed from fluorescence spectra that the intensity of the humic-like region was substantially reduced when MP-derived DOM was exposed to UV light, whereas the change of intensity was very little for natural particles. Under light conditions, the ratio of protein-like to humic-like fluorescence of MP-derived DOM was higher than that of DOM from natural particles. This study implies that a substantial amount of DOM could be leached from MPs even in MP-polluted environment under UV irradiation. Protein/humic fluorescence ratio could be utilized as a fast probing indicator to separate the two sources of particles under light.