• Title/Summary/Keyword: micromechanics

Search Result 147, Processing Time 0.024 seconds

A Study on the Prediction of Elastoplastic Behavior of Carbon Nanotube/Polymer Composites (계면 결합력과 나노튜브의 응집에 따른 나노튜브/고분자 복합재의 탄소성 거동 예측에 대한 연구)

  • Yang, Seunghwa;Yu, Suyoung;Ryu, Junghyun;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.423-430
    • /
    • 2013
  • In this research, a paramteric study to account for the effect of interfacial strength and nanotube agglomeration on the elastoplastic behavior of carbon nanotube reinforced polypropylene composites is performed. At first, the elastoplastic behavior of nanocomposites is predicted from molecular dynamics(MD) simulations. By combining the MD simulation results with the nonlinear micromechanics model based on the Mori-Tanaka model, a two-step domain decomposition method is applied to inversely identify the elastoplastic behavior of adsorption interphase zone inside nanocomposites. In nonlinear micromechanics model, the secant moduli method combined with field fluctuation method is used to predict the elastoplastic behavior of nanocomposites. To account for the imperfect material interface between nanotube and matrix polymer, displacement discontinuity condition is applied to the micromechanics model. Using the elastoplastic behavior of the adsorption interphase zone obtained from the present study, stress-strain relation of nanocomposites at various interfacial bonding condition and local nanotube agglomeration is predicted from nonlinear micromechanics model with and without the adsorption interphase zone. As a result, it has been found that local nanotube agglomeration is the most important design factor to maximize reinforcing effect of nanotube in elastic and plastic behavior.

Analysis of Flexible Textile Composites with Large Shear Deformation (전단 대변형을 고려한 유연직물복합재료 해석)

  • Suh, Young-Wook;Woo, Kyeong-Sik;Kang, Wang-Gu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.734-739
    • /
    • 2008
  • In this study, the nonlinear mechanical behavior of flexible textile composites was predicted by two-step analyses: micromechanics and mesomechanics. The effective material properties for fiber tows of flexible textile composite lamina were calculated in micromechanics, which were then used to calculate the effective tensile stress-strain curve of flexible textile composites in mesomechanics. A user defined material algorithm was developed and inserted in ABAQUS to account for the geometric non-linearity due to the large rotation and shear deformation of fiber tows in mesomechanics. It was found that the stress-strain behavior of flexible textile composites exhibited significant non-linearity. The effective tensile modulus agreed well with the test result.

Facilitation of the Diverse Processing of High Ductile ECC (Engineered Cementitious Composite) Based on Micromechanics and Rheological Control (마이크로 역학과 레올로지 제어에 의한 고인성 섬유복합재료 ECC(Engineered Cementitious Composite)의 다양한 타설 공정 구현)

  • Kim, Yun-Yong;Kim, Jeong-Su
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.5
    • /
    • pp.27-39
    • /
    • 2005
  • In the recent design of high ductile fiber-reinforced ECC (engineered cementitious composite), optimizing both processing and mechanical properties for specific applications is critical. This study presents an innovative method to develop new class ECCs, which possess the different fluid properties to facilitate diverse types of processing (i.e., self-consolidating or shotcrete processing) while maintaining ductile hardened properties. In the material design concept, we employ a parallel control of fresh and hardened properties by using micromechanics and cement rheology. Control of colloidal interaction between the particles is regarded as a key factor to allow the performance of the specific processing. To determine how to control the particle interactions and the viscosity of cement suspension, we first introduce two chemical admixtures including a highly charged polyelectrolyte and a non-ionic polymer. Optimized mixing steps and dosages we, then, obtained within the solid concentration predetermined based on micromechanical principle. Test results indicate that the rheological properties altered by this approach were revealed to be highly effective in obtaining the desired function of the fresh ECC, allowing us to readily achieve hardened properties, represented by pseudo strain-hardening behavior in uniaxial tension.

Prediction models of the shear modulus of normal or frozen soil-rock mixtures

  • Zhou, Zhong;Yang, Hao;Xing, Kai;Gao, Wenyuan
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.783-791
    • /
    • 2018
  • In consideration of the mesoscopic structure of soil-rock mixtures in which the rock aggregates are wrapped by soil at normal temperatures, a two-layer embedded model of single-inclusion composite material was built to calculate the shear modulus of soil-rock mixtures. At a freezing temperature, an interface ice interlayer was placed between the soil and rock interface in the mesoscopic structure of the soil-rock mixtures. Considering that, a three-layer embedded model of double-inclusion composite materials and a multi-step multiphase micromechanics model were then built to calculate the shear modulus of the frozen soil-rock mixtures. Given the effect of pore structure of soil-rock mixtures at normal temperatures, its shear modulus was also calculated by using of the three-layer embedded model. Experimental comparison showed that compared with the two-layer embedded model, the effect predicted by the three-layer embedded model of the soil-rock mixtures was better. The shear modulus of the soil-rock mixtures gradually increased with the increase in rock regardless of temperature, and the increment rate of the shear modulus increased rapidly particularly when the rock content ranged from 50% to 70%. The shear modulus of the frozen soil-rock mixtures was nearly 3.7 times higher than that of the soil-rock mixtures at a normal temperature.

Micromechanical analysis on anisotropic deformation of granular soils (미시역학을 이용한 사질토의 이방적 변형 특성의 해석)

  • Jung, Young-Hoon;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.129-136
    • /
    • 2004
  • Anisotropic characteristics of deformation are important to understand the particular behavior in the pre-failure state of soils. Recent experiments shows that cross-anisotropic moduli of granular soils can be expressed by functions of normal stresses in the corresponding directions, which is closely linked to micromechanical characteristics of particles. Granular soils are composed of a number of particles so that the force-displacement relationship at each contact point governs the macroscopic stress-strain relationship. Therefore, the micromechanical approach in which the deformation of granular soils is regarded as a mutual interaction between particle contacts is one of the best ways to investigate the anisotropic deformation of soils. In this study, a numerical program based on the theory of micromechanics is developed. Modified Hertz-Mindlin model is adopted to represent the force-displacement relationship in each contact point for the realistic prediction of anisotropic moduli. To evaluate the model parameters, a set of analytical solutions of anisotropic moduli is derived in the isotropic stress condition. By comparing the analytical solutions with exact values, we confirm that the analytical solutions can be utilized to evaluate model parameters within the acceptable range of error of 10%.

  • PDF

Finite element analysis of shear-deficient RC beams strengthened with CFRP strips/sheets

  • Lee, H.K.;Ha, S.K.;Afzal, M.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.247-261
    • /
    • 2008
  • Performance of shear-deficient reinforced concrete (RC) beams strengthened with carbon fiber-reinforced polymer (CFRP) strips/sheets is analyzed through numerical simulations on four-point bending tests. The numerical simulations are carried out using the finite element (FE) program ABAQUS. A micromechanics-based constitutive model (Liang et al. 2006) is implemented into the FE program ABAQUS to model CFRP strips/sheets. The predicted results are compared with experiment data (Khalifa and Nanni 2002) to assess the accuracy of the proposed FE analysis approach. A series of numerical tests are conducted to investigate the influence of stirrup lay-ups on the shear strengthening performance of the CFRP strips/sheets, to illustrate the influence of the damage parameters on the microcrack density evolution in concrete, and to investigate the shear and flexural strengthening performance of CFRP strips/ sheets. It has been shown that the proposed FE analysis approach is suitable for the performance prediction of RC beams strengthened with CFRP strips/sheets.

Calculation of Poroelastic Parameters of Porous Composites by Using Micromechanical Finite Element Models (미시역학적 유한요소 모델을 이용한 다공성 복합재료의 기공 탄성 인자 산출)

  • Kim, Sung-Jun;Han, Su-Yeon;Shin, Eui-Sup
    • Composites Research
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • In order to predict the thermoelastic behavior of porous composites, poroelastic parameters are measured by using micromechanics-based finite element models. The expanding deformation caused by pore pressure, and the degradation of homogenized elastic moduli with pores are calculated for the assessment of the poroelastic parameters. Various representative volume elements considering the shape, size, and array pattern of pores are modeled and analyzed by a finite element method. The effects of porosity and material anisotropy, and the distribution of stain energy density are investigated carefully. In addition, the measured poroelastic parameters are verified by predicting the thermo-pore-elastic behavior of carbon/phenolic composites.