• Title/Summary/Keyword: micromanufacturing

Search Result 3, Processing Time 0.025 seconds

Development of Automatic Tool Changer of SMA Tool Holder (SMA를 이용한 공구홀더의 자동공구교환장치 개발)

  • Lee, Sungcheul;Ro, Seung-Kook;Park, Jong-Kweon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Micromanufacturing is a useful system for reducing energy consumption. For micromanufacturing, tool clamping and workpiece clamping are important components to realize the machining process. Therefore, a shape memory alloy (SMA) ring type tool holder is developed. In addition, this holder needs cooling and heating processes to execute the tool clamping process. This study suggests a cooling/heating device based on peltier elements. The device will be applied to the heating/cooling process of an automatic tool changer (ATC) for the SMA tool holder. This study introduces the configuration and operating principle of the proposed ATC system. The description and prototype evaluation of this system were given. Plastic bolt and aluminum block were selected to enhance the cooling performance, and the installed tool was changed in 17 s during the experiments.

A Study on the Fault Process and Equipment Analysis of Plastic Ball Grid Array Manufacturing Using Data-Mining Techniques

  • Sim, Hyun Sik
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1271-1280
    • /
    • 2020
  • The yield and quality of a micromanufacturing process are important management factors. In real-world situations, it is difficult to achieve a high yield from a manufacturing process because the products are produced through multiple nanoscale manufacturing processes. Therefore, it is necessary to identify the processes and equipment that lead to low yields. This paper proposes an analytical method to identify the processes and equipment that cause a defect in the plastic ball grid array (PBGA) during the manufacturing process using logistic regression and stepwise variable selection. The proposed method was tested with the lot trace records of a real work site. The records included the sequence of equipment that the lot had passed through and the number of faults of each type in the lot. We demonstrated that the test results reflect the real situation in a PBGA manufacturing process, and the major equipment parameters were then controlled to confirm the improvement in yield; the yield improved by approximately 20%.