• Title/Summary/Keyword: microgrid

Search Result 344, Processing Time 0.018 seconds

Modeling & Operating Algorithm of Islanding Microgrid with Wind Turbine, Diesel Generator and BESS (풍력-디젤-BESS 독립형 마이크로그리드 모델링 및 운전제어 알고리즘에 관한 연구)

  • Kim, Jae-Eon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5893-5898
    • /
    • 2014
  • This paper proposes a modeling method and operating algorithm of an islanding microgrid that is composed of a Battery Energy Storage System (BESS), wind turbine and diesel generator applied in island areas. Initially, the bilateral AC/DC converter was designed for charge/discharge for frequency and voltage to be maintained within the proper ranges according to the load and weather change, and the operating method was proposed for a diesel generator to operate when power supply from the wind turbine or BESS is insufficient. The proposed modeling and controller design method of BESS was applied to a typical islanded microgrid with a wind turbine and diesel generator. The frequency and voltage was kept within the permissible ranges and the proposed method was proven to be appropriate through simulations.

Line-Interactive UPS for Low-Voltage Microgrids

  • Zhang, Ping;Cai, Huanyu;Zhao, Hengyang;Shi, Jianjiang;He, Xiangning
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1628-1639
    • /
    • 2015
  • Line-interactive uninterruptible power supply (UPS) systems are good candidates for providing energy storage within a microgrid. In this paper, a control scheme for a line-interactive UPS system applied in a low-voltage microgrid is presented. It is based on the Q-w and P-E droop control to achieve a seamless transition between grid-connected and stand-alone operation modes. Moreover, a new model for designing the controllers is built in the dq-frame based on the instantaneous power definition. The new-built model takes into account the dynamic performance of the output impedance of the inverter in the dq-frame and can be evaluated in the time domain. Compared to the traditional model based on the instantaneous power definition, the new-built model is more accurate to describe the dynamic performance of the system. Simulation and experimental results obtained with a microgrid consisting of two 40-kW line-interactive UPS systems are given to validate the control strategy of the line-active UPS system and the accuracy of the new-built model.

Application of Energy Storage System for Industrial Customer (산업용 수용가의 에너지저장장치 적용)

  • Hong, Jong-seok;Chai, Hui-seok;Kang, Byoung-wook;Kim, Tae-hyeong;Kim, Jae-chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.992-998
    • /
    • 2015
  • The ESS is composed of Battery Package, PCS(Power Conditioning System) Package, BCU(BESS Control Unit). In Jeju smart grid test-bed, we have developed a business model by ESS power system, renewable energy, transportation, such as customers, and have demonstrated above things. We have analyzed the EMS(Energy Management System) model of KPX where manages supply and demand of domestic electrical power system. We modified and launched EMS for microgrid but the cost was expensive and the system was large size. For releasing this system from industry as a whole, it is imperative to develop PMS(Power Management System) for microgrid. However, the cost of EMS for microgrid is expensive, some systems because it is a large development of the all of the first fruits in urgent PMS(Power Management System) for microgrid to be used in industry in general. Therefore, in this paper, we propose the ESS model considering the power systems characteristics and extensibility in korea. and also we propose the PMS to manage the ESS systems.

The Maximum Demand Power Reduction of Small Industrial Factory based on Microgrid (마이크로그리드를 기반으로 한 중소 산업용수용가의 최대수요전력 저감방안)

  • Chang, Hong-Soon;Kim, Cherl-Jin;Park, Sang-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.1
    • /
    • pp.7-14
    • /
    • 2017
  • Recently, the power consumption of industrial consumer has increased rapidly, causing problems such as lack of power reserve margin in summer and winter, and therefore there is a growing need for maximum demand power management to consumers. In this paper, we studied small microgrid system consisting of battery ESS and photovoltaic power system, applied to small and medium sized factories to reduce the maximum demand power of daily industrial power load. To verify the validity of the study, we simulated a small microgrid system using Matlab/Simulink software. As a result of applying the simulation to small and medium sized plants that consume a lot of power, it is confirmed that there is a 13% reduction in demand compared to the existing maximum demand power. This result is expected to contribute to the improvement of the power reserve margin.

An Open Circuit Fault Diagnostic Technique in IGBTs for AC to DC Converters Applied in Microgrid Applications

  • Khomfoi, Surin;Sae-Kok, Warachart;Ngamroo, Issarachai
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.801-810
    • /
    • 2011
  • An open circuit fault diagnostic method in IGBTs for the ac to dc converters used in microgrid applications is developed in this paper. An ac to dc converter is a key technology for microgrids in order to interface both distributed generation (DG) and renewable energy resources (RES). Also, highly reliable ac to dc converters are necessary to keep converters in continuous operation as long as possible during power switch fault conditions. Therefore, the proposed fault diagnostic method is developed to reduce the fault detection time and to avoid any other fault alarms because continuous operation is desired. The proposed diagnostic method is a combination of the absolute normalized dc current technique and the false alarm suppression algorithm to overcome the long fault detection time and fault alarm problems. The simulation and experimental results show that the developed fault diagnostic method can perform fault detection within about one cycle. The results illustrate that the reliability of an ac to dc converter interfaced with a microgrid can be improved by using the proposed fault diagnostic method.

Study on Impact of Wind Power in Grid Frequency Quality of Stand-alone Microgrid (독립형 마이크로그리드내 풍력발전출력이 주파수 품질에 미치는 영향 분석)

  • Huh, Jae-Sun;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.79-85
    • /
    • 2016
  • This paper analyzed the influence of wind power fluctuations in grid frequency of a stand-alone microgrid that is hybrid generation system with diesel generator, wind turbine, and Battery Energy Storage System (BESS). The existing island area power system consists of only diesel generators. So the grid frequency can be controllable from load change. But hybrid generation system with Renewable Energy Sources (RES) such as wind energy that has the intermittent output can bring power quality problems. BESS is one of the ways to improve the intermittent output of the RES. In this paper, we analyzed the role of BESS in a stand-alone microgrid. We designed a modelling of wind power system with squirrel-cage induction generator, diesel power system with synchronous generator, and BESS using transient analysis program PSCAD/EMTDC. And we analyzed the variation of the grid frequency according to the output of BESS.

Design and Implementation of Multi-Agent System for Load Shedding in Microgrid (마이크로그리드 환경에서 부하차단을 위한 다중 에이전트 시스템의 설계 및 구현)

  • Lim, Yujin;Kim, Hak-Man
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.3
    • /
    • pp.125-132
    • /
    • 2012
  • In an islanded operation mode of a microgrid, load shedding is used to balance between the power supplied and the power demanded. The conventional load-shedding schemes have considered that a load uses a continuous range of values to present its load demand. However, in reality, some loads use integer and discrete values. We design a multi-agent system for the load shedding with consideration of the discrete characteristic of load demands. Besides, we define a control architecture, functionalities of agents, and interactions among agents for implementation of the system. Through experiments in various test scenarios, we show the feasibility and performance of the system.

Autonomous Operation Analysis of DC Microgrid based on Droop Control (Droop 제어를 기반으로 한 직류 마이크로그리드의 자율 동작 분석)

  • Lee, Ji-Heon;Kim, Hyun-Jun;Han, Byung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.342-350
    • /
    • 2011
  • This paper describes the autonomous operation analysis of DC microgrid based on droop control. In order to verify the whole system operation, detailed simulation models for wind power generation, solar power generation, and battery were developed with user-defined models programmed with C-code in PSCAD/ EMTDC software. The simulation results confirm that the DC microgrid with droop control make it feasible to provide power to the load with stable manner. Based on simulation results a prototype of DC microgrid was built and tested in the lab to verify the autonomous operation experimentally. The droop control scheme can suppress the circulating current, and offers each unit to be controlled autonomously without any communication link.

Operational Strategy for a BESS-based Microgrid (BESS 기반 마이크로그리드 운영전략)

  • Lee, Ha-Lim;Chun, Yeong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1666-1672
    • /
    • 2015
  • Small islands are quite adequate places where microgrid system with renewable sources can replace diesel engines as operation costs of diesel engine in most small islands are very high. To get the large amount of renewable energy, the microgrid system has very large capacity of renewable sources. The system with large capacity of renewable sources can meet the case when supplied energy is greater than the load and the fluctuation of source output is very large. The battery energy storage system can be a solution to stabilize the system with large capacity of renewable sources. In this case, BESS can be utilized as a master source for the synchronous operation of all sources including diesel engine, wind turbine and PV. The diesel generators can be used as a backup in case the BESS SOC goes below a certain level. In this paper, we suggest a novel unit commitment of diesel generators and operation schedule of pump for water supply service with the information of wind forecast, PV forecast, and load forecast. The proposed methods has been implemented and tested at the test bed in Gasa-Island.

Operation Planning of Reserve in Microgrid Considering Market Participation and Energy Storage System

  • Lee, Si Young;Jin, Young Gyu;Kim, Sun Kyo;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1089-1095
    • /
    • 2014
  • Innumerable microgrids would be operated independently by individual operators in a future smart grid. This kind of decentralized power system requires entirely different operation scheme in the actual power system and electricity market operation. Especially, frequency regulation is very important for successive energy trade in this multi-microgrid circumstance. This paper presents an optimal energy and reserve market participation strategy and operation strategy of energy storage system (ESS) by a microgrid operator (MGO). For definite evaluation of the proposed strategy, we postulate that the MGO should participate in the Power Exchange for Frequency Control (PXFC) market, which was devised by Maria Ilic and her coworkers and is suitable to the decentralized operation circumstances. In particular, optimal reserve capacity of the frequency control market and optimal market participation ratio of ESS between frequency control market and energy market are derived theoretically and evaluated by simulations utilizing Nordic Pool Elspot price data.