• Title/Summary/Keyword: microfine

Search Result 13, Processing Time 0.022 seconds

Improved Clay Process for Builder-grade Zeolite Synthesis by Acidic Benification (광산 용출에 의한 Builder급 Zeolite점토 합성법)

  • 서정권;정필조
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.6
    • /
    • pp.685-693
    • /
    • 1988
  • From leaching of Korean native halloysite with hot sulfuric acid, active species of siliceous aluminosilicate are obtained as residue, which gives the mole ratio of SiO2/Al2O3 10 and substantially removes most acid-soluble impurities. By dissolving the residue in sodium hydroxide at an ambient temperature sodium silicate solution is prepared, this is used for zeolite synthesis as one of starting materials. In order to prepare zeolite Type 4A thereform, addition of a proper aluminum source is made so that the composition of the reactant materials may be of the following mole ratios : Na2O/SiO2=1.2-1.5, SiO2/Al2O3=1.8-2.0 and H2O/Na2O=34-45 By careful control of ageing time and temperature, subsequent crystal growth is induced into microfine zeolite 4A, which gives optimum particle size distributjion being suitable for detergent builder. The zeolite products thus obtained and highly competitive with those from the use of the refined clay in comparison of their calcium exchange capacity, whiteness and particle size distribution. The present method shows a marginal advantage over the existing procedures requiring neitherseparate purification nor calcinating otherwise necessary for the raw clay ores in use.

  • PDF

Effects of Incineration Waste Ash and Gypsum Substitution on the Properties of Blast Furnace Slag Mortar using Recycled Aggregate (소각장 애쉬 및 석고치환이 고로슬래그 미분말 기반 순환골재 모르타르의 물성에 미치는 영향)

  • Han, Min Cheol;Han, Dong Yeop;Lu, Liang Liang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.161-167
    • /
    • 2015
  • Nowadays, all the world face to the global warming problems due to the emission of $CO_2$. From the previous studies, recycled aggregates were used as an alkali activator in blast furnace slag to achieve zero-cement concrete, and favorable results of obtaining strength were achieved. In this study, gypsum and incineration waste ash were used as the additional alkali activation and effects of the gypsum and incineration waste ash to enhance the performance of the mortar were tested. Results showed that although the replacement ratio of 0.5% of incineration waste ash and 20% of anhydrous gypsum resulted in the low of mortar at the early age, while it improved the later strength and achieved the similar strength to that of conventional mortar (at 91 days).

Characteristics on the Vertical Load Capacity Degradation for Impact driven Open-ended Piles During Simulated Earthquake /sinusoidal Shaking, (타격관입 개단말뚝의 동적진동에 의한 압축지지력 저감특성)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.51-64
    • /
    • 1996
  • After the model open-ended pile attached with strain gages was driven into a pressure chamber, in which the saturated microfine sand was contained, the static compression loading test was performed for that pile. Based on the test results, ultimate pile capacity was determined. Then, either simulated earthquake shaking or sinusoidal shaking was applied to the pile with the sustained certain level OP ultimate pile load. Then, pile capacity degradations characteristics during shaking were studied. Pile capacity degradation during two different shakings were greatly different. During the simulated earthquake shaking, capacity degradation depended upon the magnitude of applied load. When the load applied to the pile top was less than 70% of ultimate pile capacidy, pile capacity degradation rate was less than 8%, and pile with the sustained ultimate pile load had the degradation rate of 90%. Also, most of pile capacity degradation was reduced in outer skin friction and degradation rate was about 80% of ultimate pile capacity reduction. During sinusoidal shaking, pile capacity degradation did not depend on the magnitude of applied load. It depended on the amplitude and the frequency , the larger the amplitude and the fewer the frequency was, the higher the degradation rate was. Reduction pattern of unit soil plugging (once depended on the mode of shaking. Unit soil plugging force by the simulated earthquake shaking was reduced in the bottom 3.0 D, of the toe irrespective of the applied load, while reduction of unit soil plugging force by sinusoidal shaking was occurred in the bottom 1.0-3.0D, of the toe. Also, the soil plugging force was reduced more than that during simulated earthquake shaking and degradation rate of the pile capacity depended on the magnitude of the applied load.

  • PDF