• 제목/요약/키워드: microenvironmental model

검색결과 9건 처리시간 0.019초

고압 송전선로 주변에 위치한 초등학교 학생들의 극저주파 자기장 노출량 예측 모델에 관한 연구 (Study about Prediction Model to Extremely Low Frequency Magnetic Fields for the Selected Primary Schoolchildren Nearby High Voltage Power Line)

  • 김윤신;현연주;최성호;노영만;홍승철
    • 한국환경보건학회지
    • /
    • 제32권5호
    • /
    • pp.506-514
    • /
    • 2006
  • The objectives of this study were to evaluate personal exposure estimated using a time activity pattern and microenvironmental model. The study was carried out for 44 children attending a primary school nearby the lines (school A) and 125 children attending a school away from 154 kV power lines (school B). For children attending school A, the estimated personal level was a little weak correlated with the measured level($Pearson\;r\;=0.34{\sim}0.35$). For children attending school B, the correlation was very low ($Pearson\;r\;=\;0.09{\sim}0.16$) using the TW A Model II, otherwise, TWA Model II-I which considered the average residential MF level according to the distance from the power line and home explained $39{\sim}53%$ of the correlation in MF personal exposures. The estimated personal exposure level was very well represented by the measured exposure level using TWA Model II-2 which consisted on spot and 24 h stationary measurements at subject's home ($Pearson\;r\;=\;0.65{\sim}0.85$). In conclusion, personal magnetic field expsoure estimated using a TWA Model II-2 should be provided for a reasonable estimate of measured exposure in schoolchildren living near the power line.

수동식 시료채취기를 이응한 사무실 직장인의 산화질소 노출평가 및 예측 -한국의 서울과 호주의 브리스베인 비교 연구- (Exposure Assessment and Estimation of Nitrogen Dioxide on Office Worker Using Passive Monitor -Comparative Study of Seoul in Korea and Brisbane in Australia-)

  • 양원호;손부순;김종오
    • 한국환경과학회지
    • /
    • 제11권3호
    • /
    • pp.247-255
    • /
    • 2002
  • Indoor and outdoor nitrogen dioxide (NO$_2$) concentrations were measured and compared with measurements of personal exposures of 95 persons in Seoul, Korea and 57 persons in Brisbane, Australia, respectively. Time activity diary was used to determine the impact on NO$_2$ exposure assessment and microenvironmental model to estimate the personal NO$_2$ exposure. Most people both Seoul and Brisbane spent their times more than 90% of indoor and more than 50% in home, respectively. Personal NO$_2$ exposures were significantly associated with indoor NO$_2$ levels with Pearson coefficient of 0.70 (p<0.01) and outdoor NO$_2$ levels with Pearson coefficient of 0.66 (p<0.01) in Seoul and of 0.51 (p<0.01) and of 0.33 (p<0.05) in Brisbane, respectively. Using microenvironmental model by time weighted average model, personal NO$_2$ exposures were estimated with NO$_2$ measurements in indoor home, indoor office and outdoor home. Estimated NO$_2$ measurements were significantly correlated with measured personal exposures (r = 0.69, p<0.001) in Seoul and in Brisbane (r = 0.66, p<0.001), respectively. Difference between measured and estimated NO$_2$ exposures by multiple regression analysis was explained that NO$_2$ levels in near workplace and other outdoors in Seoul (p = 0.023), and in transportation in Brisbane (p = 0.019) affected the personal NO$_2$ exposures.

미세 환경조건에 따른 콘크리트 탄산화 깊이 예측 (Prediction of Depth of Concrete Carbonation According to Microenvironmental Conditions)

  • 박동천
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.158-159
    • /
    • 2021
  • When the porous concrete is exposed to the external environment, the internal relative humidity changes from time to time due to the inflow and outflow of moisture. This change in moisture is affected by temperature. The temperature and humidity of concrete is dominant in the carbonation rate, the largest cause of deterioration of concrete. In this study, actual weather data were used as boundary conditions. A carbonization model of concrete temperature and humidity and calcium hydroxide was constructed to perform long-term analysis. There is a slight error in the carbonation formula of the Japanese Academy of Architecture applying the Kishtani coefficient, a representative experimental formula related to carbonization, and the analysis result values. However, considering that it behaves very similarly, it is thought that a fairly reliable numerical analysis model has been established. A slight error is believed to be due to the fact that the amount of residual calcium hydroxide in the carbonated site has not yet been clearly identified.

  • PDF

제철소 근로자의 벤젠/톨루엔/크실렌 국소환경 측정을 이용한 총 노출 예측 (Estimation of Total Exposure to Benzene, Toluene and Xylene by Microenvironmental Measurements for Iron Mill Workers)

  • 김영희;양원호;손부순
    • 한국환경보건학회지
    • /
    • 제33권5호
    • /
    • pp.359-364
    • /
    • 2007
  • The aim of this study were to assess the personal exposure to volatile organic compounds (VOCs) and to estimate the personal exposure using time-weighted average model. Three target VOCs (benzene, toluene, xylene) were analyzed in personal exposure samples and residential indoor, residential outdoor and workplace indoor microenvironments samples in the iron mill 30 workers during working 5 days. Personal exposure to VOCs significantly correlated with workplace concentration p<0.05), suggesting workplace had strong source and major contribution to personal exposure. Personal exposure could be estimated with time activity pattern and time weighted average (TWA) model of residential indoor and workplace concentrations measured. Time weighted mean microenvironments concentrations were close approximately of personal exposure concentrations. Total exposure for participants can be estimated by TWA with microenvironments measurements and time activity pattern.

암 미세환경 생체 인쇄의 현재와 미래 (The Present and Future of the Cancer Microenvironment Bioprinting)

  • 조민지;지병훈;김명주;황영미;장인호
    • 대한비뇨기종양학회지
    • /
    • 제15권3호
    • /
    • pp.103-110
    • /
    • 2017
  • Cancer is the tissue complex consisted with heterogeneous cellular compositions, and microenvironmental cues. During the various stages of cancer initiation, development, and metastasis, cell-cell interactions as well as cell-extracellular matrix play major roles. Conventional cancer models both 2-dimensional and 3-dimensional (3D) present numerous limitations, which restrict their use as biomimetic models for drug screening and fundamental cancer biology studies. Recently, bioprinting biofabrication platform enables the creation of high-resolution 3D structures. Moreover this platform has been extensively used to model multiple organs and diseases, and this versatile technique has further found its creation of accurate models that figure out the complexity of the cancer microenvironment. In this review we will focus on cancer biology and limitations with current cancer models and we discuss vascular structures bioprinting that are critical to the construction of complex 3D cancer organoids. We finally conclude with current literature on bioprinting cancer models and propose future perspectives.

확률론적 모의실험 기법을 이용한 일부 지하철 근무자들의 이산화질소 개인노출 시나리오 분석 (Scenario Analysis of Personal Nitrogen Dioxide Exposure with Monte Carlo Simulation on Subway Station Workers in Seoul)

  • 손부순;장봉기;양원호
    • 한국환경과학회지
    • /
    • 제10권3호
    • /
    • pp.195-200
    • /
    • 2001
  • The personal exposures of nitrogen dioxide(NO$_2$), microenvironmental levels and daily time activity patterns on Seoul subway station workers were measured from February 10 to March 12, 1999. Personal NO$_2$exposure for 24 hours were 29.40$\pm$9.75 ppb. NO$_2$level of occupational environment were 27.87$\pm$7.15 ppb in office, 33.60$\pm$8.64 ppb in platform and 50.13$\pm$13.04 ppb in outdoor. Personal exposure time of subway station workers was constituted as survey results with $7.94\pm$3.00 hours in office, $2.82\pm$1.63 hours in platform and 1 hours in outdoor. With above results, personal $NO_2$exposure distributions on subway station workers in Seoul were estimated with Monte Carlo simulation which uses statistical probabilistic theory on various exposure scenario testing. Some of distributions which did not have any formal patterns were assumed as custom distribution type. Estimated personal occupational $NO_2$exposure using time weighted average (TWA) model was 31.$29\pm$5.57 ppb, which were under Annual Ambient Standard (50ppb) of Korea. Though arithmetic means of measured personal $NO_2$exposure was lower than that of occupational $NO_2$exposure estimated by TWA model, considering probability distribution type simulated, probability distribution of measured personal $NO_2$exposures for 24 hours was over ambient standard with 3.23%, which was higher than those of occupational exposure(0.02%). Further research is needed for reducing these 24 hour $NO_2$personal excess exposures besides occupational exposure on subway station workers in Seoul.

  • PDF

Multicellular tumor spheroid (MTS) 배양에 의한 EMT에서 HMGB1의 역할 (Implication of High Mobility Group Box 1 (HMGB1) in Multicellular Tumor Spheroid (MTS) Culture-induced Epithelial-mesenchymal Transition)

  • 이수연;주민경;전현민;김초희;박혜경;강호성
    • 생명과학회지
    • /
    • 제29권1호
    • /
    • pp.9-17
    • /
    • 2019
  • 암조직의 내부에서 hypoxia와 glucose depletion 등의 microenvironmental stress를 받게 되면 necrosis가 유도되고, 실제로 암 조직 내부에서 necrotic core 형성이 관찰된다. Necrotic cells은 high mobility group box 1(HMGB1)를 extracellular space로 방출하는 것으로 알려져 있다. 방출된 HMGB1은 tumor-promoting cytokine으로 작용함으로써 tumor development 시 inflammation, metabolism 및 metastasis에 기여한다. 본 연구에서 non-invasive breast cancer cells MCF-7이 solid tumor의 in vitro model인 multicellular tumor spheroid (MTS) 배양을 통해 완전한 구형의 MTS를 형성하며 MTS가 성장함에 따라 inner region에 necrosis가 유도됨을 밝혔다. 또한 MCF-7 세포의 MTS 배양은 Snail 의존적으로 epithelial-mesenchymal transition (EMT)를 유도함을 관찰하였다. HMGB1의 cell surface receptors인 RAGE, TLR2, TLR4 발현이 MTS 배양에 의해 증가됨을 발견하였다. RAGE, TLR2, TLR4 를 knockdown한 결과 MTS 성장을 억제할 뿐만 아니라 MTS에 의해 증가되는 Snail 발현을 억제함을 밝혔다. 이는 MTS-induced Snail 발현이 RAGE/TLR2/TLR4의존적으로 조절되며 RAGE/TLR2/TLR4-Snail이 MTS 성장에 관여하는 것으로 보인다. 또한 Snail, RAGE, TLR2, TLR4 shRNA는 MTS 배양에 의해 유도되는 EMT를 억제함을 밝혔다. 실제 인간 암조직에서 정상조직에 비해 RAGE, TLR2, TLR4 유전자의 발현이 높음을 관찰하였다. 따라서 HMGB1이 RAGE/TLR2/4-Snail axis를 통해 MTS 배양에 따른 성장 및 EMT에 중요하게 작용할 것으로 예상된다.

대기 중 휘발성유기오염물질의 환경, 개인 및 인체 노출의 상관성 연구 (A Correlation Study between the Environmental, Personal Exposures and Biomarkers for Volatile Organic Compounds)

  • 조성준;신동천;정용
    • Environmental Analysis Health and Toxicology
    • /
    • 제17권3호
    • /
    • pp.197-205
    • /
    • 2002
  • Volatile organic compounds (VOCs) are an important public health problem throughout the world. Many important questions remain to be addressed in assessing exposure to these compounds. Because they are ubiquitous and highly volatile, special techniques must be applied in the analytical determination of VOCs. Personal exposure measurements are needed to evaluate the relationship between microenvironmental concentrations and actual exposures. It is also important to investigate exposure frequency, duration, and intensity, as well as personal exposure characteristics. In addition to air monitoring, biological monitoring may contribute significantly to risk assessment by allowing estimation of absorbed doses, rather than just the external exposure concentrations, which are evaluated by environmental and personal monitoring. This study was conducted to establish the analytic procedure of VOCs in air, blood, urine and exhaled breath and to evaluate the relationships among these environmental media. The subjects of this study were selected because they are occupationally exposed to high levels of VOCs. Environmental, personal, blood, urine and exhalation samples were collected. Purge & trap, thermal desorber, gas chromatography and mass selective detector were used to analyze the collected samples. Analytical procedures were validated with the“break through test”, 'quot;recovery test for storage and transportation”,“method detection limit test”and“inter-laboratory QA/QC study”. Assessment of halogenated compounds indicted that they were significantly correlated to each other (p value < 0.01). In a similar manner, aromatic compounds were also correlated, except in urine sample. Linear regression was used to evaluate the relationships between personal exposures and environmental concentrations. These relationships for aromatic and halogenated are as follows: Halogen $s_{personal}$ = 3.875+0.068Halogen $s_{environmet}$, ($R^2$= .930) Aromatic $s_{personal}$ = 34217.757-31.266Aromatic $s_{environmet}$, ($R^2$= .821) Multiple regression was used to evaluate the relationship between exposures and various exposure deter-minants including, gender, duration of employment, and smoking history. The results of the regression model-ins for halogens in blood and aromatics in urine are as follows: Halogen $s_{blood}$ = 8.181+0.246Halogen $s_{personal}$+3.975Gender ($R^2$= .925), Aromatic $s_{urine}$ = 249.565+0.135Aromatic $s_{personal}$ -5.651 D.S ($R^2$ = .735), In conclusion, we have established analytic procedures for VOC measurement in biological and environmental samples and have presented data demonstrating relationships between VOCs levels in biological media and environmental samples. Abbreviation GC/MS, Gas Chromatography/Mass Spectrometer; VOCs, Volatile Organic Compounds; OVM, Organic Vapor Monitor; TO, Toxic Organicsapor Monitor; TO, Toxic Organics.

국소환경 모델을 이용한 초미세먼지(PM2.5) 노출 기여율 평가 (Evaluation of PM2.5 Exposure Contribution Using a Microenvironmental Model)

  • 신지훈;최영태;김동준;민기홍;우재민;김동준;신정현;조만수;성경화;이종대;양원호
    • 한국환경보건학회지
    • /
    • 제48권2호
    • /
    • pp.59-65
    • /
    • 2022
  • Background: Since people move through microenvironments rather than staying in one place, they may be exposed to both indoor and outdoor PM2.5 concentrations. Objectives: The aim of this study was to assess the exposure level of each sub-population group and evaluate the contribution rate of the major microenvironments. Methods: Exposure scenarios for sub-population groups were constructed on the basis of a 2019 Time-Use survey and the previous literature. A total of five population groups were classified and researchers wearing MicroPEM simulated monitoring PM2.5 exposure concentrations in real-time over three days. The exposure contribution for each microenvironment were evaluated by multiplying the inhalation rate and the PM2.5 exposure concentration levels. Results: Mean PM2.5 concentrations were 33.0 ㎍/m3 and 22.5 ㎍/m3 in Guro-gu and Wonju, respectively. When the exposure was calculated considering each inhalation rate and concentration, the home showed the highest exposure contribution rate for PM2.5. As for preschool children, it was 90.8% in Guro-gu, 94.1% in Wonju. For students it was 65.3% and 67.3%. For housewives it was 98.2% and 95.8%, and 59.5% and 91.7% for office workers. Both regions had higher exposure to PM2.5 among the elderly compared to other populations, and their PM2.5 exposure contribution rates were 98.3% and 94.1% at home for Guro-gu and Wonju, respectively. Conclusions: The exposure contribution rate could be dependent on time spent in microenvironments. Notably, the contribution rate of exposure to PM2.5 at home was the highest because most people spend the longest time at home. Therefore, microenvironments such as home with a higher contribution rate of exposure to PM2.5 could be managed to upgrade public health.