• Title/Summary/Keyword: microencapsulated phase change materials

Search Result 16, Processing Time 0.028 seconds

The characteristics of microencapsulated phase-change materials (상전이 마이크로캡슐 재료의 축열특성)

  • 임대우
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.53-56
    • /
    • 2003
  • The objective of this research is to investigate the thermal behavior of microencapsulated phase-change materials(MEPCM), and a shell of melamine-formaldehyde. These PCM materials were tested using DSC and thermal data station. Fabrics with enhanced thermal properties were prepared by padding the fabrics with the microcapsules containing PCM and acryl binder. The rate of temperature increase was significantly decreased as the amount of MEPCM added on the surface of the fabrics increased.

  • PDF

Thermal Performance of the Microencapsulated PCM

  • Lee, Hyo-Jin;Lee, Jae-Goo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.1
    • /
    • pp.31-39
    • /
    • 2002
  • Microencapsulated pcm (MPCM) particles are mixed with distilled water and utilized to evaluate its characteristics and performance as a thermal storage medium transporting heat. For the present study, tetradecane ($C_14$$H_30$, $T_m$=5.5$^{\circ}C$) is capsulated in the core, coated with the melamine for their surface. The size of particles is well-controlled under 10$\mu$m in the process of in-situ polymerization with melamine-formaldehyde resin. For the experiment, the concentractions of slurries are prepared for 20 wt%, 30 wt%, and 40 wt%. The results are compared with those of water and 100% tetradecane oil. The pure water and tetradecane start solidifying within 20 minutes after introducing cooling water into the thermal storage tank whose flow rates are varied by 125 cc/min, 250 cc/min, and 500 cc/min. However, MPCM slurries are required relatively longer period of time for their phase change than pure phase change materials. That is, the entrained MPCM particles restrict their heat transfer in terms of natural convection and conduction to them.

Experimental Study on the Microencapsulated PCM as a Thermal Storage Medium (미립잠열재를 이용한 축열 특성에 관한 실험적 연구)

  • 이효진;이재구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.2
    • /
    • pp.80-87
    • /
    • 2001
  • Microencapsulated PCM particles are mixed with distilled water and utilized to evaluate its characteristics and performance as a thermal storage medium transporting heat. For the present study, tetradecane(C$_14H_30, T_m=5.5^{\circ}C$) is capsulated in the core with the melamine of its surface. The size of particles is well-controlled under 10${\mu}{\textrm}{m}$ in the way of in-situ polymerization with melamine-formaldehyde resin. For the experiment, the concentrations of slurries are prepared for 20wt%, 30wt%, and 40wt%. The results are compared with those of water and 100% tetradecane oil. The pure water and tetradecane start solidifying within 20 minutes after introducing cooling water into the thermal storage tank whose tank whose flow rates are varied by 125cc/min, 250cc/min, and 500cc/min. However, MicroPCM slurries are required relatively longer period of time for their phase change than pure phase change materials. That is, the entrained MicroPCM particles control its heat transfer in terms of natural convection and conducting to them.

  • PDF

Fluid dynamical characteristics of microencapsulated phase change material slurries (미립잠열슬러리의 유체역학적 특성연구)

  • 이효진;이승우;이재구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.549-559
    • /
    • 1999
  • An experimental study was peformed to measure the viscosity of microencapsulated PCM slurries as the functions of its concentration and temperature, and also influence to its fluid dynamics. For the viscosity measurement, a rotary type viscometer, which was equipped with temperature control system, was adopted. The slurry was mixed with water and Sodium Lauryl Sulphate as a surfactant by which its suspended particles were dispersed well without the segregation of particles during the experiment. The viscosity was increased as the concentration of MicroPCM particle added. The surfactant increased 5% of the viscosity over the working fluid without particles. Experiments were proceeded by changing parameters such as PCM particles'concentration as well as the temperature of working fluid. As a result, a model to the functions of temperature for the working fluid and its particle concentration is proposed. The proposed model, for which its standard deviation shows 0.8068, is agreed well with the reference's data. The pressure drop was measured by U-tube manometer, and then the friction factor was obtained. It was noted that the pressure drop was not influenced by the state of PCM phase, that is solid or liquid in its core materials at their same concentration. On the other hand, it was described that the pressure drop of the slurry was much increased over the working fluid without particles. A friction factor was placed on a straight line in all working fluids of the laminar flow regardless of existing particles as we expected.

  • PDF

Development of Thermoregulating Textile Materials with Microencapsulated Phase Change Materials (I) -Preparation and Characterization of Microcapsules by Coacervation- (PCM 마이크로캡슐을 이용한 열조절 섬유소재 개발 (I) - 코아세르베이션법을 이용한 마이크로캡슐의 제조 및 특성분석 -)

  • 신윤숙;손경희;조은경
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.397-400
    • /
    • 2001
  • 상변화물질(phase change material, PCM)은 외부온도변화에 따른 상변화에 따라 흡열과 방열성을 반복적으로 나타내는 물질로서 건축, 우주항공분야 등에서 열전달매체나 열조절시스템에 응용되어 왔다. 이러한 PCM의 응용방법은 PCM을 미세한 입자(직경이 약 100$\mu\textrm{m}$)로 만들어 직접 운반유체 속에 분산시켜 이용하거나, PCM을 심물질로 하는 마이크로캡슐을 제조하여 이용하는 방법을 들 수 있다. (중략)

  • PDF

Synthesis of Lauric Acid Based Phase Change Materials Via Sol-gel Route (졸겔 법을 통한 라우르산 기반의 상변화 물질의 합성)

  • Ishak, Shafiq;Lee, Han Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.42-43
    • /
    • 2020
  • Lauric acid (LA) which is also known as dodecanoic acid has been selected as the phase change material (PCM) owing to eco-friendly in nature. A systematic study has been conducted for encapsulation of LA (core) with silicon dioxide (SiO2) as shell material. Different core-shell ratio was chosen to microencapsulate the LA with 10 ml of tetraethyl orthosilicate (TEOS) as the precursor solution for the formation of SiO2. The synthesis of microencapsulated LA was carried out at 2.5 pH of precursor solution. The synthesized microencapsulated LA are characterized by Fourier transform infrared spectroscope (FT-IR) and X-Ray Diffraction (XRD) which confirmed the presence of SiO2 shell on the surface of LA.

  • PDF

Preparation of Polyurea Microcapsules Containing Phase Change Material and their Application on Fiber Composites (상전이물질을 함유한 폴리우레아 마이크로캡슐의 제조와 섬유복합소재에의 적용)

  • Kim, Hea-In;Jin, Xuan-Zhen;Choi, Hae-Wook;Park, Soo-Min
    • Textile Coloration and Finishing
    • /
    • v.19 no.1 s.92
    • /
    • pp.37-44
    • /
    • 2007
  • In this study, for textile use, the octadecane of phase change materials(PCM) was encapsulated in several micro-diameter shell which prevents leakage of the material during its liquid phase. Microencapsulated PCM(PM) was prepared with the different weight ratio of core material to wall material and by interfacial polymerization methods using polyurea as shell material. Phase stability for O/W emulsion of PCM and PVA aq. (PE) was evaluated by Turbiscan Lab. The capsule formation win identified using FT-IR. Physical properties of microcapsules including diameter, particle distribution, morphology were investigated. Thermal transport properties of suede treated with PM(SPM) were determined by KES-F7 system.

Characterization of Phase Change Materials for Textiles (옥타데칸, 노나데칸 마이크로캡슐 처리직물의 축열.방열 특성)

  • Go, Jae-Hun;Kim, So-Jin;Park, Yun-Cheol
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.10a
    • /
    • pp.151-152
    • /
    • 2008
  • PCM has the ability to change their state, these materials absorb energy during the heating process as a body contact and release energy during a reverse cooling process as phase change take place. Using the thermal energy storage of PCM which has a melting point 15 to $35^{circ}C$ is one of the most effective ideas for utilization in textile finish. In this study, microencapsulated PCM(MCPCM) were synthesized by sol-gel method using the octadecane(or nonadecane) as PCM and the silica as microcapsule materials. To develop smart temperature adaptable textile, coating process was applied to textile substrate using a composition included MCPCM.

  • PDF

Physical Properties of Microencapsulated Phase Change Material Slurries (미립잠열슬러리의 물성에 관한 실험적 연구)

  • 이효진;홍재창;이재구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.860-869
    • /
    • 2000
  • The thermal conductivity and density of slurries entrained with the particles of Micro-PCM are measured with respect to its temperatures as well as concentrations. For the thermal conductivity of slurries, a device made from P.A. Hilton (Model No. H470) is adopted. There is a well-scaled 0.3 mm gap between shells into which the slurry is injected. The temperatures of the slurry are changed to $5~25^{\circ}C$ , for which it is controled by the supplied voltage and cooling water circulated around the outer shell. The concentrations of Micro-PCM slurries are varied from 5 wt% to 50 wt%. Some general equations such as Maxwell's equation, are evaluated for their applicability with Micro-PCM slurry. As a result, it happens to be some 20% discrepancy between the experiment and the applied equations. The density measurements of Micro-PCM slurry to its temperature and concentration are peformed by hydrometer. For the experiment, tetradecane encapsulated slurry (($t_m≒6^{\circ}C$) and a mixed wax ($t_m≒50^{\circ}C$) are tested. The temperature changes of tetradecane are applied for $0^{\circ}C\;to\;$20^{\circ}C$and a mixed wax for $20^{\circ}C\;to\;$60^{\circ}C$ and its concentrations are changed from 5 wt% to 30 wt%. The results are compared with a general equation and the referenced data. For the conclusion, the experimental result and a general equation are well agreed.

  • PDF

Performance evaluation of MPCM to apply for radiant floor heating system (바닥난방시스템 적용을 위한 MPCM 성능평가)

  • Jeong, Su-Gwang;Jeon, Ji-Soo;Kim, Su-Min
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.475-479
    • /
    • 2012
  • Thermal energy storage (TES) systems using Microencapsulated phase change material (MPCM) have been recognized as one of the most advanced energy technologies in enhancing the energy efficiency and sustainability of buildings. We examined a way to incorporate MPCMs with building materials through application for wood-based flooring. Wood-based flooring is commonly used for floor finish materials of residential buildings in Korea. However, wood-based flooring has not performed the characteristic of heat storage. This study is aimed at manufacturing high thermal efficiency wood flooring by increasing its heat storage using MPCM. As a result, this study confirmed that MPCM is dispersed well in adhesive through the scanning electron microscopy analysis. From the differential scanning calorimetry analysis, it can be confirmed that this composite has the characteristic of a thermal energy storage material. Also, we analyzed how this composition was formed by physical combination through the Fourier transform infrared analysis. Also, we confirmed the bonding strength of the material by using the universal testing machine.

  • PDF