• Title/Summary/Keyword: microcystins

Search Result 55, Processing Time 0.034 seconds

Effect of Chlorination on Removal of Cyanobacterial Microcystins

  • Jung, Jong-Mun;Park, Hong-Ki;Lee, You-Jung;Jung, Eun-Young;Kwon, Ki-Won;Shin, Pan-Se;Joo, Gea-Jae
    • Journal of Environmental Science International
    • /
    • v.11 no.11
    • /
    • pp.1157-1163
    • /
    • 2002
  • The effective removal of microcystins by chlorination was investigated on a laboratory scale. With an initial chl.a concentration of more than 1,000 $\mu\textrm{g}$/ℓ, the required chlorine dose for the effective removal of microcystins from the raw water was more than 8.0 mg/ℓ. Whereas, a chlorine dose of 3.0 mg/ℓcould effectively remove microcystins from raw water containing a chl.a concentration of less than 1,000 $\mu\textrm{g}$/ℓ. The microcystin removal was more effective below pH 8.0, plus the optimum pH range was unrelated to the concentration of toxic algal material. Although chlorination is one of the most effective methods for reducing the toxin from blue-green algae, it causes cell lysis and toxin release. However, it was demonstrated that the released cell lysates and toxins could be effectively removed by a higher dose of the oxidant. The highest removal efficiency of dissolved microcystins(initial concentration: 280 $\mu\textrm{g}$ L$\^$-1/) was with a chlorine dose of 5.0 mg/ℓ.

Application of Reversed-Phase Solid Phase Extraction for the HPLC Analysis of Microcystins in Water (다량 시료중 마이크로시스틴의 농축 및 분석)

  • Kim, Myeong-Hee;Kim, Tae-Seung;Kim, Tae-Keun;Park, Sun Ku
    • Analytical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.399-402
    • /
    • 2000
  • To determine the concentrations of microcystins present in lake water or in tap water using high performance liquid chromatography, it is necessary to concentrate a large volume of water samples (about 20 L) into very small volume (0.1-0.3 mL). Concentration can be conveniently done when disc type solid phase extraction (SPE) apparatus is used. Using this apparatus we have investigated the recovery rates of three kinds of microcystins, RR, YR, LR. The recovery rates were relatively low and the reproducibilities were not good either. It is expected, however, that the appropriate selection of the disc conditioning and eluting solvents and reproducible reconcentration process after SPE will improve both the recovery rates and the reproducibilities.

  • PDF

Development of Novel Method for the Detection of Microcystin Using Chemiluminescence Immunochromatography

  • Pyo, Dong-Jin;Yoo, Ji-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.149-152
    • /
    • 2011
  • A new chemiluminescence immunochromatographic analysis system with high sensitivity and high reproducibility was developed for the determination of microcystins (MCs) in water. Horse radish peroxidase (HRP) labeled microcystin monoclonal antibody was used for the sensitive chemiluminescence detection. The chemiluminescence immunochromatographic analysis system was composed of microcystin LR (MCLR)-monoclonal antibody (mAb)-Horse Radish Peroxidase (HRP) conjugate, MCLR-BSA conjugate, luminol, hydrogen peroxide mixture solution, an immunochromatographic assay strip and luminometer. To detect the concentration of microcystins in water, we utilized one spot analysis of the strip instead of flow type analysis. We could detect the microcystins in water at a concentration as low as 9.45 pg/mL with the chemiluminescence (CL) detection.

Evaluation of Methods for Cyanobacterial Cell Lysis and Toxin (Microcystin-LR) Extraction Using Chromatographic and Mass Spectrometric Analyses

  • Kim, In S.;Nguyen, Giang-Huong;Kim, Sung-Youn;Lee, Jin-Wook;Yu, Hye-Weon
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.250-254
    • /
    • 2009
  • Contamination of microcystins, a family of heptapeptide hepatotoxins, in eutrophic water bodies is a worldwide problem. Due to their poisoning effects on animals and humans, there is a requirement to characterize and quantify all microcystins present in a sample. As microcystins are, for most part, intracellular toxins produced by some genera of cyanobacteria, lysing cyanobacterial cells to release all microcystins is considered an important step. To date, although many cell lysis methods have been used, little work has been conducted comparing the results of those different methods. In this study, various methods for cell lysis and toxin extraction from the cell lysates were investigated, including sonication, bead beating, freeze/thaw, lyophilization and lysing with TritonX-100 surfactant. It was found that lyophilization, followed by extraction with 75% methanol, was the most effective for extracting toxins from Microcystis aeruginosa cells. Another important step prior to the analysis is removing impurities and concentrating the target analyte. For these purposes, a C18 Sep-Pak solid phase extraction cartridge was used, with the percentage of the eluent methanol also evaluated. As a result, methanol percentages higher than 75% appeared to be the best eluting solvent in terms of microcystin-leucine-arginine (MC-LR) recovery efficiency for the further chromatographic and mass spectrometric analyses.

Evaluation of Pre-treatment Stages for Microcystins Analysis using LC/MS/MS (LC/MS/MS 분석을 위한 microcystins 전처리 단계별 효율성 연구)

  • Kim, Hwa-Bin;Park, Hae-Kyung;Moon, Jeong-Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.720-726
    • /
    • 2009
  • We investigated the most effective pre-treatment processes and LC/MS/MS condition for microcystins analysis. With a step-by-step pre-treatment, efficiencies of several established methods were compared. At the level of cell burst, sonication method was found to be the most efficient. As a mycrocystins first extraction solvent, 5% acetic acid showed the highest efficiency. An isolation and recovery rate of mycrocystins of ODS Sep-Pak $C_{18}$ cartridge was higher than HLB SPE cartridge. As a final elution solvent from cartridge, 100% MeOH had a better efficiency than others. Using a LC/MS/MS, effective analytical methods were established. C18 reverse column was used and gradient elution was performed with using acetonitrile, 0.1% formic acid as a mobile phase. We analysed to 0.8 mL/min flow rate fit to the $5{\mu}m$ particle size column and $55^{\circ}C$ housing temperature. The validity of established analytical method was evaluated that MDL as average $0.050{\pm}0.014{\mu}g/L$ and LOQ as average $0.160{\pm}0.045{\mu}g/L$ had a good sensitivity over 40 magnification rather than $2{\mu}g/L$ detection limit of HPLC.

Degradation of Microcystins during the Decomposition Process of Cyanobacterial Cells (Cyanobacteria의 분해에 따른 Microcystins의 변화)

  • Shin, Jae-Ki;Yim, Seong-A;Choi, Il-Hwan
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.1 s.89
    • /
    • pp.9-22
    • /
    • 2000
  • The decomposition processes of Microcystis aeruginosa under the light and dark conditions were investigated in relation to the change of microcystins, physicochemical and biological factors. Cyanobacterial cells from upper stream of Lake Dae-chong were collected and incubated in the matrix of raw water under the light and dark conditions without additional nutrients. The decomposition of Microcystis cells started from beginning of the experiment and most of the cells were decomposed on 12th day. Under the light condition the concentration of toxins in filtrate fractionwas increased with the increase of viscosity as the decomposition of algal cells proceed whereas no significant change was observed under the dark condition. Microcystin- RR was most labile toxin than the other two microcystins because it was identified mainly in lyophilized cells but detected at trace level in the filtratefraction.

  • PDF

Quantitative Analysis of Microcystins, Cyanobacterial Toxins in Soyang Lake (소양호에서 남조류 독소, 마이크로시틴의 정량 분석)

  • Lee, Jeong Ae;Lee, So Yeong;Pyo, Dong Jin
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.6
    • /
    • pp.535-540
    • /
    • 2002
  • It is very difficult to analyze the microcystins, cyanobacterial toxins quantitatively since it exists in a trace level in lakes. In this paper, two different analytical methods were tried to analyze the microcystins, cyanobacterial toxins quantitatively in water samples collected in Soyang lake. The first method was solid phase extraction method fol-lowed by High Performance Liquid Chromatography(HPLC), and the second method was Enzyme-Linked Immu-nosorbent Assay(ELISA) using the monoclonal antibody of microcystin.

Investigation of Criterion on Harmful Algae Alert System using Correlation between Cell Numbers and Cellular Microcystins Content of Korean Toxic Cyanobacteria (한국산 유독 남조류의 독소함량을 근거로 한 조류경보제 발령기준 검토)

  • Park, Hae-Kyung;Kim, Hwabin;Lee, Jay J.;Lee, Jae-An;Lee, Haejin;Park, Jong-Hwan;Seo, Jungkwan;Youn, Seok-Jea;Moon, Jeongsuk
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.491-498
    • /
    • 2011
  • We investigated the ranges of total cellular microcystins content of cyanobacterial blooms collected in Korean lakes and rivers from 2005 to 2009. The amount and composition of microcystins of Korean cyanobacteria varied depending on the sampling water bodies and dominant cyanobacterial genera. Toxic cyanobacterial cell numbers equivalent to $1{\mu}g$ MCYSTs/L using total cellular microcystin content of Korean cyanobacteria were in the range of 2,348 to 66,980,638 cells/mL. Only four samples among forty nine samples showed less cell numbers than current criterion of Harmful Algae Alert System, 5,000 cells/mL indicating current criterion do not reflect properly the microcystins content of Korean cyanobacteria. Anabaena and Aphanizomenon spp. showed three to six times higher cell numbers equivalent to $1{\mu}g$ MCYSTs/L than Microcystis spp. To propose criteria of Harmful Algae Alert System for Korean toxic cyanobacteria, we calculated about 50% selective geometrical means of cyanobacterial cell numbers equivalent to $1{\mu}g$ MCYSTs/L in order of toxic content. The proposed criteria for Microcystis, Oscillatoria, Anabaena, and Aphanizomenon spp., are 10,000, 20,000, 40,000, and 80,000 cells/mL, respectively.

Development of New Analysis Method of Cyanobacterial Toxins in Reservoirs (호수에서의 남조류 독성물질의 새로운 분석법 개발)

  • Pyo, Dong Jin;Song, Gi Seop;Yun, Seok Chang;Kim, Beom Cheol;Lee, Dae Un
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.10
    • /
    • pp.741-748
    • /
    • 1994
  • A new HPLC method for the analysis of cyanobacterial toxins, i.e. microcystin was developed using cyano-type prepacked cartridge while the conventional method was to utilize ODS cartridge. The cartridge was washed with 0.5 M acetic acid, then microcystins RR and LR were eluted from the cartridge with 30% acetonitrile. A better degree of quantitation was observed than with a ODS cartridge. Especially, in the case of microcystin LR a great difference in peak area was observed.

  • PDF