• Title/Summary/Keyword: microcosm

Search Result 145, Processing Time 0.028 seconds

Monitoring of Soil Bacterial Community and Some Inoculated Bacteria After Prescribed Fire in Microcosm

  • Song Hong-Gyu;Kim Ok-Sun;Yoo Jae-Jun;Jeon Sun-Ok;Hong Sun-Hee;Lee Dong-Hun;Ahn Tae-Seok
    • Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.285-291
    • /
    • 2004
  • The soil bacterial community and some inoculated bacteria were monitored to assess the microbial responses to prescribed fire in their microcosm. An acridine orange direct count of the bacteria in the unburned control soil were maintained at a relatively stable level $(2.0\~2.7\times10^9\;cells/g^{-1}{\cdot}soil)$ during the 180 day study period. The number of bacteria in the surface soil was decreased by fire, but was restored after 3 months. Inoculation of some bacteria increased the number of inoculated bacteria sev­eral times and these elevated levels lasted several months. The ratios of eubacteria detected by a flu­orescent in situ hybridization (FISH) method to direct bacterial count were in the range of $60\~80\%$ during the study period, with the exception of some lower values at the beginning, but there were no definite differences between the burned and unburned soils or the inoculated and uninoculated soils. In the unburned control soil, the ratios of $\alpha-,\beta-\;and\;\gamma-subgroups$ of the proteobacteria, Cytophaga-Fla­vobacterium and other eubacteria groups to that of the entire eubacteria were 13.7, 31.7, 17.1, 16.8 and $20.8\%,$ respectively, at time 0. The overall change on the patterns of the ratios of the 5 subgroups of eubacteria in the uninoculated burned and inoculated soils were similar to those of the unburned con­trol soil, with the exception of some minor variations during the initial period. The proportions of each group of eubacteria became similar in the different microcosms after 6 months, which may indicate the recovery of the original soil microbial community structure after fire or the inoculation of some bac­teria. The populations of Azotobacter vinelandii, Bacillus megaterium and Pseudomonas fluorescens, which had been inoculated to enhance the microbial activities, and monitored by FISH method, showed similar changes in the microcosms, and maintained high levels for several months.

Wastewater Utilization: A Place for Managed Wetlands - Review -

  • Humenik, F.J.;Szogi, A.A.;Hunt, P.G.;Broome, S.;Rice, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.629-632
    • /
    • 1999
  • Constructed wetlands are being used for the removal of nutrients from livestock wastewater. However, natural vegetation typically used in constructed wetlands does not have marketable value. As an alternative, agronomic plants grown under flooded or saturated soil conditions that promote denitrification can be used. Studies on constructed wetlands for swine wastewater were conducted in wetland cells that contained either natural wetland plants or a combination of soybeans and rice for two years with the objective of maximum nitrogen reduction to minimize the amount of land required for terminal treatment. Three systems, of two 3.6 by 33.5 m wetland cells connected in series were used; two systems each contained a different combination of emergent wetland vegetation: rush/bulrush (system 1) and bur-reed/cattail (system 2). The third system contained soybean (Glycine max) in saturated-soil-culture (SSC) in the first cell, and flooded rice (Oryza sativa) in the second cell. Nitrogen (N) loading rates of 3 and $10kg\;ha^{-1}\;day^{-1}$ were used in the first and second years, respectively. These loading rates were obtained by mixing swine lagoon liquid with fresh water before it was applied to the wetland. The nutrient removal efficiency was similar in the rush/bulrush, bur-reed/cattails and agronomic plant systems. Mean mass removal of N was 94 % at the loading rate of $3kg\;N\;ha^{-1}\;day^{-1}$ and decreased to 71% at the higher rate of $10kg\;N\;ha^{-1}\;day^{-1}$. The two years means for above-ground dry matter production for rush/bulrushes and bur-reed/cattails was l2 and $33Mg\;ha^{-1}$, respectively. Flooded rice yield was $4.5Mg\;ha^{-1}$ and soybean grown in saturation culture yielded $2.8Mg\;ha^{-1}$. Additionally, the performance of seven soybean cultivars using SSC in constructed wetlands with swine wastewater as the water source was evaluated for two years, The cultivar Young had the highest yield with 4.0 and $2.8Mg\;ha^{-1}$ in each year, This indicated that production of acceptable soybean yields in constructed wetlands seems feasible with SSC using swine lagoon liquid. Two microcosms studies were established to further investigate the management of constructed wetlands. In the first microcosm experiment, the effects of swine lagoon liquid on the growth of wetland plants at half (about 175 mg/l ammonia) and full strength (about 350 mg/l ammonia) was investigated. It was concluded that wetland plants can grow well in at least half strength lagoon liquid. In the second microcosm experiment, sequencing nitrification-wetland treatments was studied. When nitrified lagoon liquid was added in batch applications ($48kg\;N\;ha^{-1}\;day^{-1}$) to wetland microcosms the nitrogen removal rate was four to five times higher than when non-nitrified lagoon liquid was added. Wetland microcosms with plants were more effective than those with bare soil. These results suggest that vegetated wetlands with nitrification pretreatment are viable treatment systems for removal of large quantities of nitrogen from swine lagoon liquid.

Effect of Methyl tert-Butyl Ether and Its Metabolites on Microbial Activity and Diversity in Tidal Mud Flat (갯벌 미생물 활성 및 다양성에 미치는 Methyl tert-Butyl Ether(MTBE)와 MTBE 대사산물의 영향)

  • Cho, Won-Sil;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.336-342
    • /
    • 2008
  • The effect of methyl tert-butyl ether (MTBE) and its metabolites like tert-butyl alcohol (TBA), and formaldehyde (FA) on microbial activity and diversity in tidal mud flat was studied. MTBE, TBA, and FA with different concentrations were added into microcosms containing tidal mud samples, and placed at room temperature for 30 days. Then the physico-chemical properties such as pH, moisture contents and organic matter contents in the microcosms were measured. In addition, the total viable cell number and dehydrogenase activity were measured. Bacterial communities in the microcosms were monitored using a 16S rRNA-PCR-DGGE (Denaturing gradient gel electrophoresis) fingerprinting method. As a result, the exposure concentrations of MTBE and its metabolites showed no correlation with the physico-chemical factors (P>0.05). Dehydrogenase activity and total viable cell number were decreased with increasing MTBE, TBA and FA concentrations (P<0.05). The toxic effect was higher the following order: FA > MTBE > TBA. Dominant species in the microcosms contaminated with MTBE and its metabolites were Sphingobacteria, Flavobacteria, delta-proteobacteria, gamma-proteobacteria. The diversity of bacterial community was not significantly influenced by MTBE and its metabolites.

Biodegradation of Phenanthrene by Transformant Trametes versicolor MrP1 (구름버섯의 형질전환체 Trametes versicolor MrP1에 의한 Phenanthrene의 생분해)

  • Choi, Yun-Seong;Choi, Hyoung-Tae;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.273-278
    • /
    • 2007
  • As a model compound of PAHs (polycyclic aromatic hydrocarbons) phenanthrene has been regarded as a toxic material, mutagen and carcinogen in various animals. Biodegradation conditions of phenanthrene such as pH, temperature, shaking speed, stabilizer and cofactor of degrading enzymes were investigated with Trametes versicolor and its transformant T. versicolor MrP1 in YMG medium, minimal medium and soil microcosm. T. versicolor MrP1 can overexpress mrp gene encoding Mn-repressed peroxidase that is involved in fungal degradation. Biodegradations of phenanthrene by T. versicolor and T. versicolor MrP1 were optimally performed in conditions of weak-acid (pH 6.0), $30^{\circ}C$, shaken culture and medium containing 5 mM veratryl alcohol or tryptophan. In these optimal conditions, biodegradation of phenanthrene by T. versicolor MrP1 is 31% higher than that of wild type strain in a minimal medium for 20 days. Biodegradation of phenanthrene by T. versicolor MrP1 was also higher than that of wild type in soil microcosm. T. versicolor MrP1 can be a excellent candidate for the bioremediation of PAHs contaminated environments.

Effects of Dissolved Microcystin-LR on the Different Phytoplankton Communities in a Microcosm Scale (용존성 독소 microcystin-LR이 식물플랑크톤 군집에 미치는 영향)

  • Suh, Mi-Yeon;Han, Myung-Soo;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.313-321
    • /
    • 2005
  • Based on the result that biological control agent (BCA) increased the dissolved microcystin-LR in a field experiment to control the cyanobacterial bloom (Kim etal., 2005), a laboratory experiment was used to evaluate the effects of dissolved microcystin-LR (MCLR) with different concentrations on abundance, dominance, diversity of phytoplankton community, concentration of chlorophyll a and microcystin concentration in replicated microcosms. The treatments in this laboratory experiment comprised different concentrations of T1 (natural MCLR concentration), T10 (ten times to natural MCLR concentration), and T100 (one hundred times to natural MCLR concentration). MCLR treatment of exclusively Stephanodiscus hantzschii-dominated community in Chonho bridge hardly changed in algal species, but abundance. In Kildong pond, Aulacoseira and Dinobryonrich community was replaced by green algae Scenedesmus-rich community especially in T100 experiment. However, in Yangsoori-Ryukgakji Pond having the highest concentration of initial MCLR, Microcystis aeruginosa was decreased in abundance. Therefore, the treatment of BCA to control M. aeruginosa severely changed the Phytoplankton community in term of algal species, abundance (chlorophyll a) and dissolved microcystin-LR via a high release of MCLR.

Quantitative Analysis of Bacillus amyloliquefaciens GR4-5 in Soil (Bacillus amyloliquefaciens GR4-5 균주의 토양 내 정량 분석)

  • Kim, Dayeon;Kim, Byung-Yong;Ahn, Jae-Hyung;Weon, Hang-Yeon;Kim, Sung-Il;Kim, Wan-Gyu;Song, Jaekyeong
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.847-858
    • /
    • 2015
  • Bacillus amyloliquefaciens GR4-5 was isolated from the rhizosphere soil of Korean ginseng and displayed broad-spectrum suppression of ginseng root rot pathogens. The survivability of B. amyloliquefaciens GR4-5 in soil was investigated under three different conditions; indoor, outdoor - of which soil was put in 14 mL tube after treatment - and field environments. Soil samples were collected over a four-week period from three experimental designs, and assessed for 16S rRNA gene copy number by quantitative polymerase chain reaction (qPCR). In outdoor condition, the 16S rRNA gene copy number of Bacillus spp. was 8.35 log copies g $soil^{-1}$ immediately after the GR4-5 treatment. Two weeks later, the 16S rRNA gene copy number of Bacillus spp. (6.70 log copies g $soil^{-1}$) was similar to that of the control (6.38 log copies g $soil^{-1}$). In indoor condition, the 16S rRNA gene copy number of Bacillus spp. maintained in a certain level for a longer period than those in outdoor and field. The 16S rRNA gene copy number of Bacillus spp. in field experiment was reduced faster than that of outdoor condition. Our results show that B. amyloliquefaciens GR4-5 can survive in bulk soil for 1 week, indicating its potential use as a biocontrol agent following 7 day application intervals. This study presents that outdoor microcosm system design could be a useful method to assess easily the survivability of beneficial microorganisms.

Preliminary Study on Arsenic Speciation Changes Induced by Biodegradation of Organic Pollutants in the Soil Contaminated with Mixed Wastes (유기물분해에 따른 유류${\cdot}$중금속 복합오염토양내 비소화학종 변화의 기초연구)

  • 이상훈;천찬란;심지애
    • Economic and Environmental Geology
    • /
    • v.36 no.5
    • /
    • pp.349-356
    • /
    • 2003
  • As industrial activities are growing, pollutants found in the contaminated land are getting diverse. Some contaminated areas are subject to mixed wastes containing both organic and inorganic wastes such as hydrocarbon and heavy metals. This study concerns with the influence of the degradation of organic pollutants on the coexisting heavy metals, expecially for As. As mainly exists as two different oxidation state; As(III) and As(V) and the conversion between the two chemical forms may be induced by organic degradation in the soil contaminated by mixed wastes. We operated microcosm in an anaerobic chamber for 60 days, using sandy loam. The soils in the microcosm are artificially contaminated both by tetradecane and As, with different combination of As(III) and As(V); As(III):As(V) 1:1, As(III) only and As(V) only. Although not systematic, ratio of As(III)/As(Total) increase slightly at the later stage of experiment. Considering complicated geochemical reactions involving oxidation/reduction of organic materials, Mn/Fe oxides and As, the findings in the study seem to indicate the degradation of the organics is connected with the As speciation. That is to say, the As(V) can be reduced to As(III) either by direct or indirect influence induced by the organic degradation. Although Fe and Mn are good oxidising agent for the oxidation of As(III) to As(V), organic degradation may have suppressed reductive dissolution of the Fe and Mn oxides, causing the organic pollutants to retard the oxidation of As(III) to As(V) until the organic degradation ceases. The possible influence of organic degradation on the As speciation implies that the As in mixed wastes may be have elevated toxicity and mobility by partial conversion from As(V) to As(III).

Characterization of microbial communities and soil organic carbon degradation associated with the depth and thawing effects on tundra soil in Alaska (Alaska 툰드라 토양의 깊이 및 해동 영향에 따른 미생물 군집과 토양 유기 탄소 분해 특성)

  • Park, Ha Ju;Kim, Dockyu;Park, Hyun;Lee, Bang Yong;Lee, Yoo Kyung
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.365-374
    • /
    • 2016
  • In high-latitude regions, temperature has risen ($0.6^{\circ}C$ per decade) and this leads to the increase in microbial degradability against soil organic carbon (SOC). Furthermore, the decomposed SOC is converted into green-house gases ($CO_2$ and $CH_4$) and their release could further increase the rate of climate change. Thus, understanding the microbial diversity and their functions linked with SOC degradation in soil-thawing model is necessary. In this study, we divided tundra soil from Council, Alaska into two depth regions (30-40 cm and 50-60 cm of depth, designated as SPF and PF, respectively) and incubated that for 108 days at $0^{\circ}C$. A total of 111,804 reads were obtained through a pyrosequencing-based metagenomic study during the microcosm experiments, and 574-1,128 of bacterial operational taxonomic units (OTUs) and 30-57 of archaeal OTUs were observed. Taxonomic analysis showed that the distribution of bacterial taxa was significantly different between two samples. In detail, the relative abundance of phyla Actinobacteria and Firmicutes largely increased in SPF and PF soil, respectively, while phyla Crenarchaeota was increased in both soil samples. Weight measurement and gel permeation chromatography of the SOC extracts demonstrated that polymerization of humic acids, main component of SOC, occurred during the microcosm experiments. Taken together our results indicate that these bacterial and archaeal phyla could play a key function in SOC degradation and utilization in cold tundra soil.

Variations of Species Composition of Early Feeding Organisms Through Nature Mixed Culture (자연혼합배양에 의한 초기 먹이생물의 종 조성 변화)

  • Jung, Min-Min;Oh, Bong-Sae;Ku, Hag-Dong;Lee, Chang-Hoon;Yang, Moon-Ho;Moon, Tae-Seok;Kim, Sam-Yeon;Kim, Hyeung-Sin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • We were successfully reared young marine ornamental larva fish in a unique process of microalgae blooming culture tank. The marine fish larva was grown and survived in this method. Generally, we called this method as natural mixed culture. Observed planktonic microalgae were 34 species with 19 diatoms (Detonula pumila, Nitzschia sp., Fragilaria oceanica, Chaetoceros curvisetus, Stephanodiscus sp., Chaetoceros decipies, Chaetoceros sp., Thalassiosira rotula, Eucampia zodiacus, Diploneis splendica, Nitzschia longissima, Surirella cuneata, Asterionella glacialis, Nitzschia spp., Chaetoceros debile, Thalassionema nitzschioides, Nitzschia closterium, Skeletonema costatum and Licmophora sp.), 14 flagellates (Euglena, sp., Gonyaulax sp., Pyramimonas sp., Protoperidinium sp., Eutreptia sp., Parapedinella sp., unidentified micrc-flagellate, Gyrodinium sp., Scrippsiell trochoidea, Gymnodinium sanguineum, Chrysochromulina sp., Gymnodinium sp., Prorocentrum triestinum and Micromonas sp.) and 1 ciliate (Mesodinium rubrum) in this culture tank. Dominant microalgae were Chrysochromulina sp. during the larval rearing periods. Blooming condition maintained continuously and stably from 10 to 60 days in this microcosm.

Evaluation of Bioremediation Effectiveness by Resolving Rate-Limiting Parameters in Diesel-Contaminated Soil

  • Joo, Choon-Sung;Oh, Young-Sook;Chung, Wook-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.607-613
    • /
    • 2001
  • The biodegradation rates of diesel oil by a selected diesel-degrading bacterium, Pseudomonas stutzeri strain Y2G1, and microbial consortia composed of combinations of 5 selected diesel-degrading bacterial were determined in liquid and soil systems. The diesel degradation rate by strain Y2G1 linearly increased $(R^2=0.98)$ as the diesel concentration increased up to 12%, and a degradation rate as high as 5.64 g/l/day was obtained. The diesel degradation by strain Y2G1 was significantly affected by several environmental factors, and the optimal conditions for pH, temperature, and moisture content were at pH8, $25^{\circ}C$, and 10%, respectively. In the batch soil microcosm tests, inoculation, especially in the form of a consortium, and the addition of nutrients both significantly enhanced the diesel degradation by a factor of 1.5 and 4, respectively. Aeration of the soil columns effectively accelerated the diesel degradation, and the initial degradation rate was obviously stimulated with the addition of inorganic nutrients. Based on these results, it was concluded that the major rate-limiting factors in the tested diesel-contaminated soil were the presence of inorganic nutrients, oxygen, and diesel-degrading microorganisms. To resolve these limiting parameters, bioremediation strategies were specifically designed for the tested soil, and the successful mitigation of the limiting parameters resulted in an enhancement of the bioremediation efficiency by a factor of 11.

  • PDF