• Title/Summary/Keyword: microcosm

Search Result 145, Processing Time 0.041 seconds

The Courtyard as a Microcosm of Everyday Life and Social Interaction

  • Lee, Myung-Sik;Park, Youjung
    • Architectural research
    • /
    • v.17 no.2
    • /
    • pp.65-74
    • /
    • 2015
  • The habitual rooms and other structures related to everyday life are almost always grouped around the courtyard and together make up a house. There are many kinds of variety in types of courtyard houses depending on location, composition, allocation and relationship with inner space of the house. Every type of courtyard house accumulates many factors, which are social and economic circumstances, weather and geographical conditions. They are still well harmonized with life style and weather conditions in each area and basic unit of city organization. A courtyard can be shown as a place for everyday conversation like a community. Everyday space is the connective tissue that binds daily lives together, amorphous and so persuasive that it is difficult even to perceive. In spite of its ubiquity, everyday space is nearly invisible in the professional discourses of the city, like everyday life. Therefore Courtyards are special places that are outside yet almost inside, open to the sky, - a microcosm which gives relief to the inner rooms, gives the inhabitants a sense of ease and calm, and the feeling that they have their own piece of sky to use and protect them. This research will explore a variety of space use and dwelling types through courtyards based on field research and design projects.

Fate and Bioaccumulation of Zinc Oxide Nanoparticles in a Microcosm (산화아연 나노물질의 미소생태계 내 거동 및 생물축적)

  • Kim, Eunjeong;Lee, Jae-woo;Jo, Eunhye;Sung, Hwa Kyung;Yoo, Sun Kyoung;Kim, Kyung-tae;Shin, Yu-jin;Kim, Ji-eun;Park, Sun-Young;Eom, Ig-chun;Kim, Pilje
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.3
    • /
    • pp.194-201
    • /
    • 2017
  • Objectives: Zinc oxide nanoparticles (ZnO NPs) are widely used in various commercial products, but they are exposed to the environment and can induce toxicity. In this study, we investigated the environmental fate and bioaccumulation of ZnO NPs in a microcosm. Methods: The microcosm was composed of water, soil (Lufa Soil 2.2) and organisms (Oryzias latipes, Neocaridina denticulata, Semisulcospira libertina). Point five and 5 mg/L of ZnO NPs were exposed in the microcosm for 14 days. Total Zn concentrations were measured using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) and intracellular NPs were observed using Transmission Electron Microscopy (TEM). Results: In the initial stages of exposure, the Zn concentrations in water increased in all exposure groups and then decreased, while the Zn concentration in soil increased after three hours for the 5 mg/L solution. Zn concentrations also showed increasing trends in N. denticulata and S. libertina at 0.5 and 5 mg/L, and in O. latipes at 5 mg/L. Accumulation of NPs was found in the livers of O. latipes and hepatopancreas of N. denticulata and S. libertina. Conclusions: In the early stages of exposure, ZnO NPs remained in the water, and then were transported to the soil and test species. Unlike other species, total Zn concentrations in N. denticulata and S. libertina increased for both 0.5 mg/L and 5 mg/L. Therefore, ZnO NPs were more easily accumulated in zoobenthos than in fish.

Chronic Toxicity(Mortality) of Freshwater Amphipod Diporeia spp. for Zn in Sediment Microcosm

  • Song, Ki-Hoon
    • Korean Journal of Environmental Biology
    • /
    • v.25 no.1
    • /
    • pp.27-33
    • /
    • 2007
  • Sediment microcosm experiments were conducted for 14 and 28 days using Zn spiked sediment to examine chronic toxicity (mortality) of Diporeia spp. as a function of density and time. Mean cumulative Diporeia mortality in 28 day sediment microcosms was 25% at $1,800\;{\mu}g\;g^{-1}$ total Zn in sediment. Although a certain fraction $(20{\sim}40%)$ of Diporeia was dead, its mortality was attributed by handling stress within 4 days and was not significantly encreased with increasing within the range of Zn concentrations examined in this study. These results suggest that Diporeia can tolerate Zn contaminated sediment and may be useful as a biomonitor for Zn contamination in freshwater environments.

Effects of Mycorrhizal and Endophytic Fungi on Plant Community: a Microcosm Study

  • Park, Sang-Hyun;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.35 no.4
    • /
    • pp.186-190
    • /
    • 2007
  • This study was conducted to investigate the effects of foliar endophytic fungi and arbuscular mycorrhizal fungi (AMF) on plant community structure in experimental microcosms containing an assemblage of five species of plants (Oenothera odorata, Plantago asiatica, Trifolium repens, Isodon japonicas and Aster yomena). Leaves of Sasa borealis, Potentilia fragarioides, and Viola mandshurica were collected in Chungbuk, Korea. Endophytic fungi were isolated from the surface sterilized leaves and identified to species level using molecular and morphological techniques. Four isolates of the endophytic fungi were inoculated to the leaves of host plants in the microcosms. Also, three species of AMF spores were extracted from pure cultures and the mixture of the three species inoculated to the roots of the plants. After four months of growth in a green house, effects of both symbiotic fungi on plant species diversity, community composition and productivity were examined. The plant species diversity showed significant differences with inoculation of the symbiotic fungi. Results indicate that AMF significantly affect plant productivity and plant community structure.

지하수내 질산성 질소의 In-situ Bioremediation을 위한 최적 Electron donor 결정에 관한 연구

  • Eo, Seong-Uk;Kim, Yeong;Jeong, Gi-Seop
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.192-195
    • /
    • 2003
  • As a part of our research project for in-situ bioremediation of nitrate contaminated. groundwater, screening studies to determine an effective electron donor (EO) and/or carbon source (CS) such as acetate, ethanol, formate, fumarate, lactate, and propionate were conducted. To evaluate the feasibility for the biological degradation of nitrate, soil microcosm studies using nitrate-contaminated soil and groundwater were performed. The nitrate removal percentage in the order from the highest to the lowest was: formate, fumarate, and ethanol > lactate > propionate. Essentially no nitrate consumption was observed In acetate-fed microcosms. The order of nitrate removal rate from the highest to lowest was fumarate, formate, lactate, ethanol, and propionate. These results suggest that fumarate and formate are promising EDs/CSs for in-situ bioremediation of nitrate - contaminated oxygenated groundwater.

  • PDF

EXERGY : PRELIMINARY RESULTS OF AN EXPERIMENTAL LABORATORY VERIFICATION OF ITS APPLICABILITY IN APPLIED ECOLOGY (엑서지 : 응용생태학에서의 exergy의 적용가능성 실증)

  • Silow, Eugene A.;Oh, In-Hye
    • The Journal of Natural Sciences
    • /
    • v.12 no.1
    • /
    • pp.61-67
    • /
    • 2002
  • The results of laboratory experiments with microcosms containing Daphnia magna and Chlorella vulgaris demonstrated decrease of the structural exergy of artificial communities after the addition of model toxicants phenol and cobalt chloride. Structural exergy changes were more expressed than changes of components biomasses and total biomass of the community. It once more points to the possibility of the use structural exergy as ecosystem health reflecting parameter.

  • PDF