• Title/Summary/Keyword: microcircuitry

Search Result 2, Processing Time 0.02 seconds

Finding Needles in a Haystack with Light: Resolving the Microcircuitry of the Brain with Fluorescence Microscopy

  • Rah, Jong-Cheol;Choi, Joon Ho
    • Molecules and Cells
    • /
    • v.45 no.2
    • /
    • pp.84-92
    • /
    • 2022
  • To understand the microcircuitry of the brain, the anatomical and functional connectivity among neurons must be resolved. One of the technical hurdles to achieving this goal is that the anatomical connections, or synapses, are often smaller than the diffraction limit of light and thus are difficult to resolve by conventional microscopy, while the microcircuitry of the brain is on the scale of 1 mm or larger. To date, the gold standard method for microcircuit reconstruction has been electron microscopy (EM). However, despite its rapid development, EM has clear shortcomings as a method for microcircuit reconstruction. The greatest weakness of this method is arguably its incompatibility with functional and molecular analysis. Fluorescence microscopy, on the other hand, is readily compatible with numerous physiological and molecular analyses. We believe that recent advances in various fluorescence microscopy techniques offer a new possibility for reliable synapse detection in large volumes of neural circuits. In this minireview, we summarize recent advances in fluorescence-based microcircuit reconstruction. In the same vein as these studies, we introduce our recent efforts to analyze the long-range connectivity among brain areas and the subcellular distribution of synapses of interest in relatively large volumes of cortical tissue with array tomography and superresolution microscopy.

Ferroelectricity of Bi-doped ZnO Films Probed by Scanning Probe Microscopy

  • Ben, Chu Van;Lee, Ju-Won;Kim, Jung-Hoon;Yang, Woo-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.323-323
    • /
    • 2012
  • We present ferroelectricity of Bi-doped ZnO film probed by piezoresponse force microscopy (PFM), which is one of the Scanning Probe Microscopy techniques. Perovskite ferroelectrics are limited to integration of devices into semiconductor microcircuitry due to hard adjusting their lattice structure to the semiconductor materials. Transition metal doped ZnO film is one of the candidate materials for replacing the perovskite ferroelectrics. In this study, ferroelectric characteristics of the Bi-doped ZnO grown by pulsed laser deposition were probed by PFM. The polarization switching and patterning of the ZnO films were performed by applying DC bias voltage between the AFM tips and the films with varying voltages and polarity. The PFM contrast before and after patterning showed clearly polarization switching for a specific concentration of Bi atoms. In addition, the patterned regions with nanoscale show clearly the local piezoresponse hysteresis loop. The spontaneous polarization of the ZnO film is estimated from the local piezoresponse based on the comparison with LiNbO3 single crystals.

  • PDF