• Title/Summary/Keyword: microcantilever

Search Result 46, Processing Time 0.034 seconds

Proper Orthogonal Mode Analysis of AFM Microcantilevers in Dynamic Mode (동적모드 AFM 마이크로캔틸레버의 적합직교모드 해석)

  • Cho, Hong-Mo;Lee, Soo-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.606-611
    • /
    • 2007
  • Proper orthogonal decomposition (POD) is a method for extracting bases for modal decomposition from the ensemble of dynamic signals. Using the POD method, we analyzed the proper orthogonal modes (POMs) of AFM microcantilevers in dynamic mode operations such as Tapping Mode. The POMs and POVs (proper orthogonal values) were computed through MATLAB simulation for the 5-mode model of the microcantilever. We found that the POV portion of the higher POMs of the tapping microcanilever slightly increased in comparison with no tapping. This implies that the modal energy in the fundamental mode can be transferred to the higher modes during tapping.

  • PDF

Proper Orthogonal Mode Extraction of AFM Microcantilevers in Dynamic Mode (동적모드 AFM 마이크로캔틸레버의 적합직교모드 추출)

  • Cho, Hong-Mo;Hong, Sang-Hyuk;Kwon, Won-Tae;Lee, Soo-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.264-268
    • /
    • 2007
  • Proper orthogonal decomposition(POD) is a method for extracting bases for modal decomposition from the ensemble of signals. We verified the connection of the proper orthogonal modes(POMs) and the linear normal modes(LNMs) through MATLAB simulation for the simple cantilever and AFM microcantilever models. Using the POMs, we can analyze and model effectively the dynamic mode of AFM microcantievers.

  • PDF

Analysis of Resonance Based Micromechanical Bio-Chemical Sensing Structures (공진 기반 마이크로기계 생화학 센싱 구조물의 해석)

  • Yeo, Min-Ku;Shin, Yoon-Hyuck;Yim, Hong-Jae;Lim, Si-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1767-1772
    • /
    • 2008
  • A microcantilever is a well-known MEMS structure for sensing bio-chemical molecules. When bio-chemical molecules are adsorbed on the microcantilever's surface, resonance frequency shift is generated. There are two issues in this phenomena. The first one is which one between mass change and surface stress change effects is more dominant on the resonance frequency shift. The second one is what will be the performance change when the boundary condition is changed from cantilevers to double clamped beams. We have studied the effect of surface stress change and compared it with that of mass change by using FEM analysis. Furthermore, for microstructures having different boundary conditions, we have studied Q-factor, which determines the detection limit of micro/nano mechanical sensors.

  • PDF

Microcantilever biosensor: sensing platform, surface characterization and multiscale modeling

  • Chen, Chuin-Shan;Kuan, Shu;Chang, Tzu-Hsuan;Chou, Chia-Ching;Chang, Shu-Wei;Huang, Long-Sun
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.17-37
    • /
    • 2011
  • The microcantilever (MCL) sensor is one of the most promising platforms for next-generation label-free biosensing applications. It outperforms conventional label-free detection methods in terms of portability and parallelization. In this paper, an overview of recent advances in our understanding of the coupling between biomolecular interactions and MCL responses is given. A dual compact optical MCL sensing platform was built to enable biosensing experiments both in gas-phase environments and in solutions. The thermal bimorph effect was found to be an effective nanomanipulator for the MCL platform calibration. The study of the alkanethiol self-assembly monolayer (SAM) chain length effect revealed that 1-octanethiol ($C_8H_{17}SH$) induced a larger deflection than that from 1-dodecanethiol ($C_{12}H_{25}SH$) in solutions. Using the clinically relevant biomarker C-reactive protein (CRP), we revealed that the analytical sensitivity of the MCL reached a diagnostic level of $1{\sim}500{\mu}g/ml$ within a 7% coefficient of variation. Using grazing incident x-ray diffractometer (GIXRD) analysis, we found that the gold surface was dominated by the (111) crystalline plane. Moreover, using X-ray photoelectron spectroscopy (XPS) analysis, we confirmed that the Au-S covalent bonds occurred in SAM adsorption whereas CRP molecular bindings occurred in protein analysis. First principles density functional theory (DFT) simulations were also used to examine biomolecular adsorption mechanisms. Multiscale modeling was then developed to connect the interactions at the molecular level with the MCL mechanical response. The alkanethiol SAM chain length effect in air was successfully predicted using the multiscale scheme.

Quantitative Alpha Fetoprotein Detection with a Piezoelectric Microcantilever Mass Sensor (압전 마이크로캔틸레버 질량센서를 이용한 정량적 알파태아단백 검출)

  • Lee, Sangk-Yu;Cho, Jong-Yun;Lee, Yeol-Ho;Jeon, Sang-Min;Cha, Hyung-Joon;Moon, Wonk-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.487-493
    • /
    • 2011
  • Alpha fetoprotein(AFP), which is serological marker for hepatocellular carcinoma, was quantitatively measured by its normal concentration, 10 ng/ml, with a label-free piezoelectric microcantilever mass sensor. The principle of detection is based on changes in the resonant frequency of the piezoelectric microcantilever before and after target molecules are attached to it, and its resonant frequency is measured electrically using a conductance spectrum. The resonant frequency of the developed sensor is approximately 1.34 MHz and the mass sensitivity is approximately 175 Hz/pg. The sensor has high reliability as mass sensor by reducing the effect of surface stress on resonant frequency due to attached proteins. 'Dip and dry' technique was used to react the sensor with reagents for immobilizing AFP antibody on the sensor and detecting AFP antigen. The measured mass of the detected AFP antigen was 6.02 pg at the concentration of 10 ng/ml, and 10.67 pg at 50 ng/ml when the immunoreaction time was 10 min.