• 제목/요약/키워드: microcantilever

검색결과 46건 처리시간 0.023초

pH Measurements with a Microcantilever Array-Based Biosensor System

  • Hur, Shin;Jung, Young-Do
    • 센서학회지
    • /
    • 제21권3호
    • /
    • pp.186-191
    • /
    • 2012
  • In this paper, we present a pH measurement method that uses a microcantilever-array-based biosensor system. It is composed of microcantilever array, liquid cell, micro syringe pump, laser diode array, position sensitive detector, data acquisition device, and data processing software. Four microcantilevers are functionalized with pH-sensitive MHA(mercaptohexadecanoic acid) as a probe, while three microcantilevers are functionalized with HDT(hexadecane thiol) as reference. We prepare PBS(phosphate buffered saline) solutions of different pH and inject them into the liquid cell with a predefined volumetric speed at regular time intervals. The functionalized mircocantilevers in the liquid cell deflect as a self-assembled monolayer on the microcantilever binds with probe molecules in the solution. The difference in deflection between the MHA-covered probe microcantilever and the HDT-covered reference microcantilever was used to compensate for thermal drift. The deflection difference clearly increases with increasing pH in the solution. It was shown that when the pH values of the PBS solutions are high, there were large variations in the deflection of microcantilevers, whereas there were small variations for low pH value. The experimental results show that the microcantilever array functionalized with MHA and HDT can detect pH value with good repeatability.

Dynamical behaviour of electrically actuated microcantilevers

  • Farokhi, Hamed;Ghayesh, Mergen H.
    • Coupled systems mechanics
    • /
    • 제4권3호
    • /
    • pp.251-262
    • /
    • 2015
  • The current paper aims at investigating the nonlinear dynamical behaviour of an electrically actuated microcantilever. The microcantilever is excited by a combination of AC and DC voltages. The nonlinear equation of motion of the microcantilever is obtained by means of force and moment balances. A high-dimensional Galerkin scheme is then applied to reduce the equation of motion to a discrete model. A numerical technique, based on the pseudo-arclength continuation method, is used to solve the discretized model. The electrostatic deflection of the microcantilever and static pull-in instabilities, due to the DC voltage, are analyzed by plotting the so-called DC voltage-deflection curves. At the simultaneous presence of the DC and AC voltages, the nonlinear dynamical behaviour of the microcantilever is analyzed by plotting frequency-response and force-response curves.

표면 미세 가공기술을 이용한 마이크로 캔틸레버의 제작과 바이오센서로의 응용 (Fabrication of Microcantilever-based Biosensor Using the Surface Micromachining Technique)

  • 유경아;정승룡;강치중;김용상
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권1호
    • /
    • pp.11-15
    • /
    • 2006
  • We propose an optical and an electrical detection methods for detecting various bio-molecules effectively with microcantilevers. The microcantilevers were fabricated employing surface micromachining technique that has attractive advantages in terms of cost efficiency, simplicity and ability of fabricating in array. The fluid cell system for injection of bio-molecular solution is fabricated using polydimethylsiloxane (PDMS) and a fused silica glass. The microcantilever is deflected with respect to the difference of the surface stress caused by the formation of self-assembled bio-molecules on the gold coated side of the microcantilever. It detected cystamine dihydrochloride and glutaraldehyde molecules and analyzed individual concentrations of the cystamine dihydrochloride solution. We confirm that the deflections of bending-up or bending-down are occurred by the bio-molecule adsorption and microcantilever can be widely used to a ${\mu}-TAS$ and a lab-on-a-chip for a potential detection of various bio-molecules.

고속 마이크로 외팔보 공진시험을 통한 나노스케일 티타늄 박막의 탄성계수 평가 (High-speed Microcantilever Resonance Testing on the Young's Modulus of a Nanoscale Titanium Film)

  • 김윤영
    • 한국표면공학회지
    • /
    • 제50권5호
    • /
    • pp.392-397
    • /
    • 2017
  • The Young's modulus of a nanoscale titanium (Ti) thin-film was evaluated using a high-speed microcantilever resonating at the megahertz frequency in the present study. A 350 nm thick Ti film was deposited on the surface of a silicon microcantilever, and the morphology of the film was analyzed using the atomic force microscopy. The microcantilever was excited to resonate using an ultrasonic pulser that generates tone burst signals and the resonance frequency shift induced by the deposition of Ti was measured using a Michelson interferometer. The Young's modulus was determined through a modal analysis using the finite element method and the result was validated by the nanoindentation testing, showing good agreement within a relative error of 1.0%. The present study proposes a nanomechanical characterization technique with enhanced accuracy and sensitivity.

맞물린 나노전극을 가지는 마이크로 캔틸레버의 제작 및 순환전압전류방법을 이용한 DNA의 선택적인 고정화 (DNA Selective Immobilization on a Microcantilever with Nano-Interdigitated Electrodes (Nano-IDEs) Using Cyclic Voltammetry)

  • 이정아;이광철
    • 대한기계학회논문집A
    • /
    • 제32권6호
    • /
    • pp.459-464
    • /
    • 2008
  • We present a novel microcantilever device with nano-interdigitated electrodes (nano-IDEs) and DNA selective immobilization on the nano-IDEs for biosensing applications. Using the nano-IDEs and cyclic voltammetric methods, we have achieved selective immobilization of DNA with submicrometer spatial resolution on a freestanding microcantilever. $70{\sim}500\;nm$-wide gold (Au) nano-IDEs are fabricated on a low-stress SiNx microcantilever with dimensions of $100{\sim}600\;{\mu}m$ in length, and $15{\sim}60\;{\mu}m$ in width, with a $0.5\;{\mu}m$ thickness using electron beam lithography and bulk micromachining. Streptavidin is selectively deposited on one side of the nano-IDEs using cyclic voltammetry at a scan rate of 0.1 V/s with a range of $-0.2{\sim}0.7\;V$ during $1{\sim}5$ cycles. The selective deposition of dsDNA is confirmed by fluorescence microscopy after labeling with YOYO-1 dye.

적합직교모드를 이용한 동적모드 AFM 의 비선형 모델링 (Nonlinear Modeling of Dynamic AFM Using Proper Orthogonal Modes)

  • 홍상혁;이수일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.379-382
    • /
    • 2007
  • The proper orthogonal decomposition(POD) is used to the modal analysis of microcantilever of dynamic mode atomic force microscopy(AFM). The proper orthogonal modes(POM) are extracted from vibrating signals of microcantilever when it resonates and taps the sample. The POMs resemble the linear normal modes(LNM) of cantilever vibrating at each resonance frequency. Some of POMs in tapping microcantilever show quite different shapes from the POMs of the resonating microcantilever. Also this POMs can be applied to model for the complex nonlinear behavior of the dynamic mode AFM microcantilevers.

  • PDF

Fabrication of Microcantilever Ultrasound Sensor and Its Application to the Scanning Laser Source Technique

  • Sohn, Young-Hoon;Krishnaswamy, Sridhar
    • 비파괴검사학회지
    • /
    • 제25권6호
    • /
    • pp.459-466
    • /
    • 2005
  • The scanning laser source (SLS) technique has been proposed recently as an effective way to investigate small surface-breaking defects, By monitoring the amplitude and frequency changes of the ultrasound generated as the SLS scans over a defect, the SLS technique has provided enhanced signal-to-noise performance compared to the traditional pitch-catch or pulse-echo ultrasonic methods, An extension of the SLS approach to map defects in microdevices is proposed by bringing both the generator and the receiver to the near-field scattering region of the defects, To facilitate near-field ultrasound measurement, silicon microcantilever probes are fabricated using microfabrication technique and their acoustical characteristics are investigated, Then, both the laser-generated ultrasonic source and the microcantilever probe are used to monitor near-field scattering by a surface-breaking defect.

RF-MEMS 스위치용 마이크로 외팔보의 감쇠특성 (Damping Characteristics of a Microcantilever for Radio Frequency-microelectromechanical Switches)

  • 이진우
    • 한국소음진동공학회논문집
    • /
    • 제21권6호
    • /
    • pp.553-561
    • /
    • 2011
  • A theoretical approach is carried out to predict the quality factors of flexible modes of a microcantilever on a squeeze-film. The frequency response function of an inertially-excited microcantilever beam is derived using an Euler-Bernoulli beam theory. The external force due to squeeze-film phenomenon is developed from the Reynolds equation. Slip boundary conditions are employed at the interfaces between the fluid and the structure to consider the gas rarefaction effect, and pressure boundary condition at both ends of fluid analysis region is enhanced to increase the exactness of predicted quality factors. To the end, an approximate equation is derived for the first bending mode of the microcantilever. Using the approximate equation, the quality factors of the second and third bending modes are calculated and compared with experimental results of previously reported work. The comparison shows the feasibility of the current approach.

AFM 마이크로캔틸레버 특성에 따른 비접촉모드의 영향 고찰 (The Effects of AFM Microcantilever Characteristics on the Non-Contact Mode Measurements)

  • 홍상혁;이수일;이장무
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1391-1395
    • /
    • 2006
  • In non-contact mode atomic force microscopy, the response of a resonating tip is used to measure the nanoscale topography and other properties of a sample surface. However, the tip-surface interactions can affect the tip response and destabilize the non-contact mode control. Especially it is difficult to obtain a good scanned image of high adhesion surfaces such as polymers using conventional hard NCHR tip and non-contact mode control. In this study, experimental investigation is made on the non-contact mode imaging and we report the microcantilever having low stiffness (OMCL) is useful to measure the properties of samples such as elasticity. In addition, we proved that it was adequate to use low stiffness microcantilever to obtain a good scanned image in AFM for the soft and high adhesion sample.

  • PDF

정전기력으로 구동되는 마이크로 캔틸레버 질량 센서의 제작과 특성 (Fabrication and Characterization of Electrostatically Actuated Microcantilever Mass Sensors)

  • 이정철;최범규
    • 센서학회지
    • /
    • 제20권1호
    • /
    • pp.40-45
    • /
    • 2011
  • Microcantilevers have been actively used in probe-based microscopy and gravimetric sensing for biological or chemical analytes. To integrate actuation or detection schemes in the structure, typical fabrication processes include several photolithographic steps along with conventional MEMS fabrication. In this paper, a simple and straightforward way to fabricate and operate silicon microcantilever mass sensors is presented. The fabricated microcantilever sensors which can be electrostatically actuated require only two photolithographic steps. Resonant characteristics of fabricated microcantilevers are measured with a custom optical-lever and results show size-dependent quality factors. Using a $40\;{\mu}m$ long, $7\;{\mu}m$ wide, and $3\;{\mu}m$ thick cantilever, we achieved subfemtogram mass resolution in a 1 Hz bandwidth.