• Title/Summary/Keyword: microbial surfactant

Search Result 34, Processing Time 0.019 seconds

Production and Application of Sophorolipid, A Microbial Surfactant (소포로리피드[미생물계면활성제]의 생산과 응용)

  • Cho, Kwi-Joon;Kim, Young-Bum;Kim, Eun-Ki
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.747-753
    • /
    • 1999
  • Microbial surfactants are more effective and environmentally friendly than many synthetic surfactants. Sophorolipid, a glycolipid type microbial surfactant, is produced from C. bombiocola. Cultivation techniques to increase the productivity have been developed using various carbon sources and reactor setup, reaching its concentration upto 100-300 g/L. Due to its high productivity and non-toxicity, sophorolipid became one of the most promising alternative to synthetic surfactants. Fermentative production of sophorolipid depends primarily on the carbon sources, such as glucose and vegetable oils, and nitrogen sources. Chemical modification of the sophorolipid produces various derivative with different physical properties including hydrophile-liphophilie balance(HLB), emulsion formation, surface tension and dispersing ability. Commercial potentials of sophorolipid in the cosmetic, health care and environment clean-up industries have been discussed.

  • PDF

Combined Treatment of High Hydrostatic Pressure and Cationic Surfactant Washing to Inactivate Listeria monocytogenes on Fresh-Cut Broccoli

  • Woo, Hyuk-Je;Park, Jun-Beom;Kang, Ji-Hoon;Chun, Ho Hyun;Song, Kyung Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1240-1247
    • /
    • 2019
  • This study was conducted to examine the inactivation effect of the combined treatment of high hydrostatic pressure (HHP; 400 MPa for 1, 3, and 5 min) and cationic surfactant washing (0.05% benzethonium chloride, BEC) against Listeria monocytogenes inoculated on fresh-cut broccoli (FCB). Washing with BEC at concentrations exceeding 0.05% resulted in 2.3 log-reduction of L. monocytogenes counts on FCB, whereas HHP treatment had approximately 5.5-5.6 log-reductions regardless of the treatment time. Scanning electron microscopy corroborated microbial enumeration, revealing that the combined treatment was more effective in removing L. monocytogenes from FCB than individual treatment with HHP or BEC. Color and total glucosinolate content were maintained after the combined treatment, although the hardness of the FCB slightly decreased. The results clearly suggest that the combined treatment of HHP and BEC washing has potential value as a new sanitization method to improve the microbial safety of FCB.

The Effects of Negative- and Positive- Charged Surfactants on In vitro DM Digestibility and the Growth of Ruminal Mixed Microorganisms (양(+) 이온성 및 음(-) 이온성 계면활성제 첨가가 반추위 혼합 미생물에 의한 In vitro 건물소화율 및 미생물 성장에 미치는 영향)

  • Lee, S.J.;Shin, N.H.;Kim, W.Y.;Moon, Y.H.;Kim, H.S.;Ha, J.K.;Lee, S.S.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.647-656
    • /
    • 2007
  • In order to investigate the effects of supplemental ionic surfactants in in vitro ruminal fermentation, N-Lauroylsarcosine sodium salt(N-LSS) and sodium dodecyl sulfate(SDS) for negative(-) ionic surfactant, and hexadecylpyridinium chloride monohydrate(HPCM) and hexadecyltrimethyl ammonium bromide(HTAB) for positive (+) ionic surfactant were supplemented by 0.05% and 0.1% into the Dehority’s artificial medium containing rice straw(1mm) as a substrate. In vitro DM digestibility, the growth of rumen mixed microbes, pH, cumulative gas production and SEM(Scanning Electron Microscopy) observation of microbial attachment on rice straw particle were investigated through the experiment composing 9 treatments (two supplemental levels of two positive ionic(+) surfactant, two supplemental levels of two negative(-) ionic surfactant) including the control. The sample collection was at 6, 12, 24, 48 and 72 h post fermentation with 3 replications per treatments. DM digestibility in treatments supplemented (+) or (-) surfactants almost stopped afterward 12 h fermentation, in vitro DM digestibility at 72 h post fermentation in the ionic surfactants was at half level of that of the control(P<0.05). Accumulative gas production in in vitro was less(P<0.05) with addition of ionic surfactants compared to the control. The amount of rumen mixed microbes recovered from in vitro incubation fluid pleateaued at 12 h post fermentation for the positive (+) ionic surfactants, but steadily increased as fermentation time elapsed for the control. Rumen microbial growth rate was significantly(P<0.05) low in the negative(-) ionic surfactant compared to the control. pH of the incubation fluid was ranged from 6.02 to 7.20, and was the highest in the negative(-) ionic surfactants, and was the lowest in the control(P<0.05). In SEM observation, rumen microbial population attached on rice straw particle was less with addition of ionic surfactants than the control. In conclusion we could not found any positive effects of negative- and positive- charged surfactants on rumunal fermentation characteristics and rumen microbial growth rates.

Effects of Moisture and a Saponin-based Surfactant during Barley Processing on Growth Performance and Carcass Quality of Feedlot Steers and on In vitro Ruminal Fermentation

  • Wang, Y.;Gibb, D.;Greer, D.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.12
    • /
    • pp.1690-1698
    • /
    • 2011
  • Feedlot and in vitro ruminal experiments were conducted to assess the effects of saponin-containing surfactant applied during tempering of barley grain on cattle growth performance and on ruminal fermentation. In the feedlot experiment, treatments with three barley grain/barley silage based diets were prepared using barley grain at 7.7% moisture (dry, D), after tempering to 18% moisture (M), or after tempering with a saponin-based surfactant included at 60 ml/t (MS). Each treatment was rolled at settings determined previously to yield optimally processed barley. A total of 180 newly weaned British${\times}$Charolais steers were fed three diets in 18 pens for a 63-d backgrounding period and 91-d finishing period to determine feed intake, growth rate and feed efficiency. Cattle were slaughtered at the end of the experiment to measure the carcass characteristics. Tempering reduced (p<0.001) volume weight and processing index, but processing characteristics were similar between MS and M. Tempering increased (p<0.05) growth during backgrounding only, compared with D, but did not affect feed intake in either phase. During backgrounding, feed efficiency was improved with tempering, but during finishing and overall this response was only observed with the surfactant. Tempering did not affect carcass weight, fat content or meat yield. Surfactant doubled the proportion of carcasses grading AAA. In the in vitro experiment, barley (500 mg; ground to <1.0 mm or steam-rolled) was incubated in buffered ruminal fluid (40 ml) without or with surfactant up to 20 ${\mu}l/g$ DM substrate for 24 h. Surfactant increased (p<0.05) apparent DM disappearance and starch digestibility but reduced productions of gas and the volatile fatty acid and acetate:propionate ratio, irrespective of barley particle size. Compared with feeding diets prepared with non-tempered barley, tempering with surfactant increased the feed efficiency of feedlot steers. This may have arisen from alteration in processing characteristics of barley grain by surfactant rather than its direct effect on rumen microbial fermentation.

A Study on the Residual Surfactants and the Microbial Contaminants on Stainless dishes (서울지역 일부 급식학교 편식기 중 합성세제 잔류양 및 미생물 오염도에 관한 연구)

  • 황순녀
    • Journal of Food Hygiene and Safety
    • /
    • v.8 no.4
    • /
    • pp.241-249
    • /
    • 1993
  • This study was performed to investigate the remainity of synthetic surfactant (LAS) by HPLC and the microbial contamination on stainless steel dishes. For the maintenance and the improvement of school lunch program's safety, the remainity of synthetic surfactants (LAS) on stainless steel dishes washed with auto dishwasher was investigated by HPLC, and the microbial contamination on same dishes was surveyed. The results were as follows: (1) The remainity of synthetic surfactant (LAS) a) The residue of LAS was very small because of the repeated washing of dishes by strong pressurized water. b) The remainity range of LAS on stainless steel dishes was 2.1~7.2 $\mu\textrm{g}$/dish. The remainity of general surfactants was higher in cold water then warm water. The amount of residual general surfatants was 5.95 $\mu\textrm{g}$/dish in cold water, and 2.95 $\mu\textrm{g}$/dish in warm water. There was no difference of the remainity of special surfactants by water temperature. The amount of residual surfactants was 3.9 $\mu\textrm{g}$/dish. c) There was no difference of residue amount by washing times. (2) The microbial contamination after washing with general surfactants. 1) The mean MPN of E. coli was 203(53~345) on 1 hr, 19(6~28) on 2 hrs, in cold water, and 1100(only 1 dish of 1 school) on 1 hr, 24(6~42) on 2hrs. 2) After washing with general surgactants the mean of contamination by general microbials was 956(25~2300)on 1 hr, 694(45~2500) on 2 hrs. in cold water and 803(5~2300) on 1 hr, 671(5~2500)on 2 hrs. After washing with special surfactants the mean of contamination by general microbials was 788(136~2900) on 1 hr, 1122(15~3000) on 2 hrs, in cold water and 537(5~2000) on 1 hr, 88(15~150) on 2 hrs in warm water. (3) Like the results of this study, the good washing methods of stainless steel dishes for school luch program were as follows. First, for washing stainless steel dishes, the use of special surfactants was recommended at 30~4$0^{\circ}C$ water. Second, at 7$0^{\circ}C$ water, the rinsing of dishes was recommended. Third, the final rinsing at 8$0^{\circ}C$ combined with simple disinfection and dry was recommended.

  • PDF

Improving the Microbial Safety of Fresh-Cut Endive with a Combined Treatment of Cinnamon Leaf Oil Emulsion Containing Cationic Surfactants and Ultrasound

  • Park, Jun-Beom;Kang, Ji-Hoon;Song, Kyung Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.503-509
    • /
    • 2018
  • Endive is widely consumed in a fresh-cut form owing to its rich nutritional content. However, fresh-cut vegetables are susceptible to contamination by pathogenic bacteria. This study investigated the antibacterial activities of the combined treatment of cinnamon leaf oil emulsion containing cetylpyridinium chloride or benzalkonium chloride (CLC and CLB, respectively) as a cationic surfactant and ultrasound (US) against Listeria monocytogenes and Escherichia coli O157:H7 on endive. The combined treatment of CLC or CLB with US reduced the population of L. monocytogenes by 1.58 and 1.47 log colony forming units (CFU)/g, respectively, and that of E. coli O157:H7 by 1.60 and 1.46 log CFU/g, respectively, as compared with water washing treatment. The reduction levels of both pathogens were higher than those observed with 0.2 mg/ml sodium hypochlorite. In addition, the combined treatment showed no effect on the quality of the fresh-cut endive (FCE). In particular, the degree of browning in FCE was less for the treatment group than for the control and water washing treatment groups. Thus, cationic surfactant-based cinnamon leaf oil emulsions combined with US may be an effective washing treatment for the microbial safety of FCE.

Optimized Production of Microbial Surfactant, S-acid, from Pencilium spiculisporum (Penicilium spiculisporum으로부터 미생물 계면활성제의 최적생산에 관한 연구)

  • 김동호;이정복임건빈김은기
    • KSBB Journal
    • /
    • v.10 no.2
    • /
    • pp.113-118
    • /
    • 1995
  • Investigation and optimization of culturing conditions were performed for the production of microbial surfactant, O-acid (precursor of S-acid) using Pencilium spiculisporum. Glucose and ammonium nitrate were found to be the most effective carbon and nitrogen sources, respectively. Supplementation of medium with trace elements, such as $CaCl_2 and FeSO_4$, increased the O-acid production by 20% and maintenance of the dissolved oxygen tension near saturation increased 40% of the O-acid productivity. Also 60% increase in the O-acid production was observed by maintaining the glucose concentration near 50%g/l by feeding glucose during the cultivation.

  • PDF

Isolation of Surfactant-Resistant Pseudomonads from the Estuarine Surface Microlayer

  • Louvado, Antonio;Coelho, Francisco J.R.C.;Domingues, Patricia;Santos, Ana L.;Gomes, Newton C.M.;Almeida, Adelaide;Cunha, Angela
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.283-291
    • /
    • 2012
  • Bioremediation efforts often rely on the application of surfactants to enhance hydrocarbon bioavailability. However, synthetic surfactants can sometimes be toxic to degrading microorganisms, thus reducing the clearance rate of the pollutant. Therefore, surfactant-resistant bacteria can be an important tool for bioremediation efforts of hydrophobic pollutants, circumventing the toxicity of synthetic surfactants that often delay microbial bioremediation of these contaminants. In this study, we screened a natural surfactant-rich compartment, the estuarine surface microlayer (SML), for cultivable surfactant-resistant bacteria using selective cultures of sodium dodecyl sulfate (SDS) and cetyl trimethylammonium bromide (CTAB). Resistance to surfactants was evaluated by colony counts in solid media amended with critical micelle concentrations (CMC) of either surfactants, in comparison with non-amended controls. Selective cultures for surfactant-resistant bacteria were prepared in mineral medium also containing CMC concentrations of either CTAB or SDS. The surfactantresistant isolates obtained were tested by PCR for the Pseudomonas genus marker gacA gene and for the naphthalene-dioxygenase-encoding gene ndo. Isolates were also screened for biosurfactant production by the atomized oil assay. A high proportion of culturable bacterioneuston was tolerant to CMC concentrations of SDS or CTAB. The gacA-targeted PCR revealed that 64% of the isolates were Pseudomonads. Biosurfactant production in solid medium was detected in 9.4% of tested isolates, all affiliated with genus Pseudomonas. This study shows that the SML is a potential source of surfactant-resistant and biosurfactant-producing bacteria in which Pseudomonads emerge as a relevant group.

Effects of Surfactant Tween 80 on Forage Degradability and Microbial Growth on the In vitro Rumen Mixed and Pure Cultures

  • Goto, M.;Bae, H.;Lee, S.S.;Yahaya, M.S.;Karita, S.;Wanjae, K.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.5
    • /
    • pp.672-676
    • /
    • 2003
  • Effect of a surfactant Tween 80 on the bacterial growth in the rumen was examined on the in vitro pure cultures of Streptococcus bovis, Selenomonas ruminantium, Butyrivibrio fibrisolvens, Prevotella ruminicola, Megasphaera elsidenni, Fibrobacta succinogenes, Ruminanococcus albus and Ruminococcus flavefaciens. Dry matter degradability (DMD), concentrations and compositions of volatile fatty acids (VFA), and the most probable number (MPN) of cellulolytic bacteria and total number of bacteria in the presence of Tween 80 were also examined on the in vitro rumen mixed culture either with barley grain or orchardgrass hay. The growth of S. bovis, S. ruminantium, B. fibrisolvens, P. ruminicola, M. elsidenni and F. succinogenes were significantly higher (p<0.05) at over 0.05% concentrations of Tween 80 than those of the control cultures, while was not changed with R. albus and R. flavefaciens. With rumen mixed culture the DMD of barley grain and orchardgrass hay was significantly higher (p<0.05) at a 0.2% concentration of Tween 80 than the control, being reflected in the significantly higher (p<0.05) VFA production (mmol $g^{-1}$DDM) with orchardgrass hay. The higher (p<0.05) ratio of propionate to acetate at a 0.2% concentration of Tween 80 was also observed with orchardgrass hay, showing a similar trend with barley grain. No changes in the total bacterial number and MPN of cellulolytic bacteria were observed.

Effect of Synthetic Surfactants on the Activity of Mutagens (계면활성제가 돌연변이원성 물질의 활성에 미치는 영향)

  • Choi, Yoon-Ho;Chung, Yong
    • Environmental Analysis Health and Toxicology
    • /
    • v.7 no.3_4
    • /
    • pp.69-79
    • /
    • 1992
  • Recently, concerns of water pollution and health risks caused by synthetic detergents have emerged, as the use of various detergents has increased It has been suggested that some surfactants are cocarcinogens. The surfactants tested were linear alkylbenzene sulfonate, sodium lauryl sulfate, polyoxyethylene sorbitan monooleat (tween 80), and the mutagens were 1-nitropyrene, N -methyl- N'-nitro-N -nitrosoguanidine, benzo (a) pyrene, and aflatoxin B$_1$. This study was undertaken to investigate the effects of surfactants on the activity of mytagens using the Ames mutagenic assay with Salmonella typhimurium TA98, TA100. The results were summarized as follows: 1. The surfactants have no mutagenic activity of themselves. 2. Higher doses of surfactants than 100 $\mu\textrm{g}$/plate reduced the number of revertants. It is assumed that the reduction would inhibited cell growth. 3. When the comutagenic ratio is defined as the ratio between mutagenic activity itself and the activity with mutagen and surfactant (drinking water quality standard), LAS showed the comutagenic ratio 0.86-1.17 and SLS 0.74-1.10 as well. According to the comparisons, it could not be recognised for the comutagenicity of drinking water quality standard of surfactant. 4. As increasing the amount of mutagens, the designated amount of surfactant did not affected the mutagen's activity statistically. From the above result, syunthetic surfactants do not present mutagenicity and comutagenicity in the microbial assay.

  • PDF