• Title/Summary/Keyword: microbial growth

Search Result 1,743, Processing Time 0.034 seconds

Antimicrobial Activities Against Oral Microbes and Growth-inhibitory Effect on Oral Tumor Cell by Extract of Paeonia lactiflora (작약 추출물의 구강병원균에 대한 항균성 및 구강암 세포 증식 억제효과)

  • Park, Hyun-Suk;Min, Kyung-Jin;Cha, Chun-Geun;Song, Jin-Wook;Son, Jin-Chang
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.1 s.94
    • /
    • pp.21-29
    • /
    • 2007
  • Paeonia lactiflora was stepwise extracted with hexane, chloroform, ethyl acetate, butanol and water. Anti-microbial activity of each extract was investigated. Methanol extract of P. lactiflora revealed anti-microbial activity against S. mutans, C. albicans, and S. aureus. Also, hexane fraction revealed anti-bacterial activity against S. mutans and ethyl acetate fraction acted as potent anti-microbial agent on C. albicans and S. aureus. The relative growth ratio(RGR) of hexane fraction of P. lactiflora against S. mutans were determined as 77.8% in concentration of 0.125 mg/ml, 98.46% in 0.25 mg/ml and 100% in 0.5 mg/ml. The ethyl acetate fraction of P. lactiflora revealed RGR against C. albicans as 52.5% in concentration of 0.125 mg/ml, 60.83% in 0.25 mg/ml and 78.33% in 0.5 mg/ml. It indicate that increasing concentration increase RGR. The measured minimal inhibitory concentration(MIC) of hexane fraction on S. mutans KCTC 5316 strain was 0.5 mg/ml and MIC of ethyl acetate fraction on C. albicans KCTC 7270 was 2.0 mg/ml. The experiment of inhibition to growth of KB roll(oral squamous cell carcinoma) result 61.9% in butanol, 76.7% in hexane extract of P. lactiflora. The hexane extract exhibit potent inhibition effect to the growth of KB cell. These results suggest that the hexane extract of Paeonia lactiflora has antimicrobial activity against S. mutans and has preventive effect to dental caries in addition to potent inhibition to KB cell growth.

Growth Promotion of Tobacco Plant by 3-hydroxy-2-Butanone from Bacillus vallismortis EXTN-1

  • Ann, Mi Na;Cho, Yung Eun;Ryu, Ho Jin;Kim, Heung Tae;Park, Kyungseok
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.388-393
    • /
    • 2013
  • It has been well documented that Bacillus vallismortis strain EXTN-1, a beneficial rhizosphere bacterium, could enhance plant growth and induce systemic resistance to diverse pathogens in plants. However, the molecular mechanisms for how the EXTN-1 promote plant growth and induce resistances to diverse pathogens. Here, we show that 3-Hydroxy-2-butanone, a volatile organic compound (VOCs) emitted from the EXTN1, is a key factor for the bacteria-mediated beneficial effects on plant growth and defense systems. We found that the presence of volatile signals of EXTN-1 resulted in growth promotion of tobacco seedlings. The identification and analysis of EXTN-1-secreted volatile signals by solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) indicated that a 3-hydroxy-2-butanone could provide not only the plant growth promotion, but also higher resistance against Pectobacterium carotovorum SCC1. These results suggest that a volatile compound released from EXTN-1 enhances the plant growth promotion and immunity of plants.

Effect of Aqueous Chlorine Dioxide Treatment on the Microbial Growth and Quality of Chicken Legs during Storage

  • Hong, Yun-Hee;Ku, Gyeong-Ju;Kim, Min-Ki;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.1
    • /
    • pp.45-50
    • /
    • 2008
  • The effect of aqueous chlorine dioxide ($ClO_2$) treatment on microbial growth and quality of chicken leg during storage was examined. Chicken leg samples were treated with 0, 50, and 100 ppm of $ClO_2$ solution and stored at $4^{\circ}C$. Aqueous $ClO_2$ treatment significantly decreased the populations of total aerobic bacteria, yeast and mold, and coliforms in chicken leg. One hundred ppm $ClO_2$ treatment reduced the initial populations of total aerobic bacteria, yeast and mold, and coliforms by 0.93, 1.15, and 0.94 log CFU/g, respectively. The pH and volatile basic nitrogen values in the chicken leg decreased with increasing aqueous $ClO_2$ concentration, while concentrations thiobarbituric acid reactive substances (TBARS) increased during storage regardless of aqueous $ClO_2$ concentration. Sensory evaluation results revealed that the quality of the chicken leg treated with aqueous $ClO_2$ during storage was better than that of the control. These results indicate that aqueous $ClO_2$ treatment can be useful for improving the microbial safety of chicken leg during storage.

Physiological Responses of Tomato Plants and Soil Microbial Activity in Salt Affected Greenhouse Soil

  • Sung, Jwakyung;Lee, Suyeon;Nam, Hyunjung;Lee, Yejin;Lee, Jongsik;Almaroai, Yaser A.;Ok, Yongsik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1065-1072
    • /
    • 2012
  • Crop productivity decreases globally as a result of salinization. However, salinity impact on greenhouse-grown crops is much higher than on field-grown crops due to the overall concentrations of nutrients in greenhouse soils. Therefore, this study was performed to determine the short-term changes in growth, photosynthesis, and metabolites of tomato plants grown in greenhouse under heavily input of fertilizers evaluated by microbial activity and chemical properties of soils. The soils (< 3, 3.01~6, 6.01~10 and > 10.01 dS $m^{-1}$) from farmer's greenhouse fields having different fertilization practices were used. Results showed that the salt-accumulated soil affected adversely the growth of tomato plants. Tomato plants were seldom to complete their growth against > 10.0 dS $m^{-1}$ level of EC. The assimilation rate of $CO_2$ from the upper fully expanded leaves of tomato plants is reduced under increasing soil EC levels at 14 days, however; it was the highest in moderate or high EC-subjected (3.0 ~ 10.0 dS $m^{-1}$) at 28 days. In our experiment, soluble sugars and starch were sensitive markers for salt stress and thus might assume the status of crops against various salt conditions. Taken together, tomato plants found to have tolerance against moderate soil EC stress. Various EC levels (< 3.0 ~ 10.0 dS $m^{-1}$) led to a slight decrease in organic matter (OM) contents in soils at 28 days. Salinity stress led to higher microbial activity in soils, followed by a decomposition of OM in soils as indicated by the changes in soil chemical properties.

Effect of Chlorine Dioxide Treatment on Microbial Growth and Qualities of Chicken Breast

  • Ko, Jong-Kwan;Ma, Yu-Hyun;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.2
    • /
    • pp.122-129
    • /
    • 2005
  • Chlorine dioxide $(ClO_2)$ treatment was evaluated for microbial growth inhibition and its effects on the quality of vacuum-packaged chicken breasts. Chicken breast samples were treated with 3, 50, and 100 ppm of $ClO_2$ solution, respectively. After $ClO_2$ treatment, chicken breast samples were individually vacuum-packaged and stored at $4^{\circ}C$, a typical storage temperature for meat and meat product, for 7 days. The vacuum-packaged chicken breasts treated with $ClO_2$ had significantly lower total bacteria, yeast and mold, total coliform, and Salmonella spp. were significantly reduced by $ClO_2$ treatment. $D_{10}-values$ of total bacteria count, yeast and mold, total coliform, and Salmonella spp. in vacuum-packaged chicken breasts was 93, 83, 85, and 50 ppm, respectively. The pH of vacuum-packaged chicken breasts decreased with increasing $ClO_2$ concentration. Thiobarbituric acid reacted substance (TBARS) values of vacuum-packaged chicken breasts increased during storage, regardless of $ClO_2$ concentration. $ClO_2$ treatment caused negligible changes in Hunter L, a, and b values in the vacuum-packaged chicken breasts. Sensory evaluation of the vacuum-packaged chicken breasts showed that there were no significant changes among the samples treated with various $ClO_2$ concentration. These results indicate that $ClO_2$ treatment could be useful in improving the microbial safety and quality of meat products.

Evaluation on the implications of microbial survival to the performance of an urban stormwater tree-box filter

  • Geronimo, Franz Kevin;Reyes, Nash Jett;Choi, Hyeseon;Guerra, Heidi;Jeon, Minsu;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.128-128
    • /
    • 2021
  • Most of the studies about stormwater low impact development technologies used generalized observations without fully understanding the mechanisms affecting the whole performance of the systems from catchment to the facility itself. At present, these LID technologies have been treated as black box due to fluctuating flow and environmental conditions affecting its operation and treatment performance. As such, the implications of microbial community to the overall performance of the tree-box filter were investigated in this study. Summer season was found to be the most suitable season for microorganism growth since more microorganism were found during this season. Least microorganism count was found in spring because of the plant growth during this season since plant penology influences the seasonal dynamics of soil microorganisms. Litterfall during fall season might have affected the microorganism count during winter since, during this season, the compositional variety of soil organic matter changes affecting growth of soil microbial communities. Microbial analyses of sediment samples collected in the system revealed that the most dominant microorganism phylum is Proteobacteria in all the seasons in both inlet and outlet comprising 37% to 47% of the total microorganism count. Proteobacteria was followed by Acidobacteria, Actinobacteria and Chloroflexi which comprises 6% to 20%, 9% to 20% and 2% to 27%, respectively of the total microorganism count for each season. These findings were useful in optimizing the design and performance of tree box filters considering physical, chemical and biological pollutant removal mechanisms.

  • PDF

Effect of dietary Achyranthes japonica extract on growth performance of growing pigs and absorption rate of quercetin in blood

  • Md Mortuza Hossain;Hyung Suk Hwang;Minyeong Pang;Min-Koo Choi;In Ho Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.103-114
    • /
    • 2024
  • This study was done to investigate the effects of the incorporation of Achyranthes japonica extracts (AJE) in diet on the production parameters of growing pigs. Exp 1: Total, 105 crossbred pigs (average body weight: 24.47 ± 2.46 kg) were used in a 6-week feeding trial. Pigs (seven replicates, five pigs per pen) were allotted randomly to three treatments. Dietary treatments: CON (basal diet); basal diet with 0.025% AJE, and basal diet + 0.050% AJE). Growth performance, nutrient digestibility, fecal microbial count, and fecal noxious gas were assessed in this study. Average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F) were not affected by the addition of up to 0.05% AJE. In the case of apparent total tract digestibility (ATTD), dry matter (DM), nitrogen (N), and digestible energy (DE) were not changed in 3rd and 6th weeks of the feeding trial through the addition of AJE up to 0.05% in the growing pig diet. In microbial count, Lactobacillus and Escherichia coli count at 3rd and 6th week was similar in all the treatment diets. The inclusion of AJE at levels up to 0.05% in growing pig diet had no effect on the production of NH3, H2S, acetic acid, and CO2 in the feces. After ending the Exp 1, a total of nine pigs were divided into three treatment groups. Treatment diets were included, TRT1, basal diet + powder quercetin 30 g; TRT2, basal diet + powder quercetin 150 g; TRT3, basal diet + powder quercetin 300g. Rate of absorption in blood was increased with the higher dose of quercetin. The results suggested incorporation of AJE up to 0.05% has no significant effect on ADG, ADFI, and G:F, as well as DM, N, and DE digestibility, fecal microbial count, and fecal noxious gas emission in growing pigs, even though no negative effect was found.

Anti-Oral Microbial Effect of Ethanol Extract of Angelica gigas Nakai

  • Soon-Jeong Jeong
    • Journal of dental hygiene science
    • /
    • v.24 no.1
    • /
    • pp.54-61
    • /
    • 2024
  • Background: The Korean name for Angelica gigas Nakai (AGN) is Cham-dang-gui, which grows naturally or is cultivated, and its dried roots are used in traditional herbal medicines. The AGN root exert various pharmacological effects. Despite the various pharmacological effects of the AGN root, there are no reports on its anti-oral microbial effects. The purpose of this study was to reveal the anti-oral microbial effect and the microbial and biochemical changes in oral microorganisms according to the concentration of the ethanol extract of AGN (EAGN) root, and to confirm the possibility of using EAGN as a plant-derived functional substance for controlling oral infectious microorganisms. Methods: Disk diffusion test, growth measurement, biofilm formation assay, and measurements of acid production and buffering capacity were performed to confirm the antibacterial effect of EAGN. Results: EAGN showed anti-oral bacterial effects against Streptococcus mutans and Aggregatibacter actinomycetemcomitans at all concentrations, with S. mutans showing a more susceptible effect at concentrations above 5.0 mg/ml and A. actinomycetemcomitans at 3.75 mg/ml. EAGN treatment significantly reduced A. actinomycetemcomitans growth at all concentrations tested. Biofilm formation was significantly reduced at concentrations above 3.75 mg/ml for S. mutans and 2.5 mg/ml for A. actinomycetemcomitans. Acid production in S. mutans and A. actinomycetemcomitans was significantly increased by treatment with EAGN, and the buffering capacities of S. mutans and A. actinomycetemcomitans increased from an EAGN concentration of 3.75 mg/ml and above. Conclusion: EAGN showed anti-oral bacterial effects against both S. mutans and A. actinomycetemcomitans at concentrations above 3.75 mg/ml, which were thought to be related to the inhibition of their growth and biofilm formation. Therefore, EAGN can be used as a safe functional substance derived from medicinal plants owing to its antibacterial effects against S. mutans and A. actinomycetemcomitans.

Pseudomonas putida Strain 17 Isolated from Replant Soil Promotes Tomato Growth and Inhibits Conidial Germination of Soilborne Plant Pathogens

  • Lee, Sang-Woo;Ahn, Il-Pyung;Lim, Jae-Wook;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.244-251
    • /
    • 2005
  • The induction of growth promotion on numerous crops by rhizobacteria is a well documented phenomenon. In case of tomato (Lycopersicon esculentum), fruit yield is higher in replant soil than that in fresh soil. To investigate what kind of rhizobacterium is involved, microbial community in rhizosphere and on rhizoplane of tomato plants from each soil was analyzed by dilution plating on selective media. Many Gram-negative bacteria and actinomycetes were isolated from tomato in replant soil. One Gram-negative rhizobacterium isolated was identified as Pseudomonas putida based on its biochemical characteristics, fatty acid methyl ester analysis and 16S rDNA sequence. This bacterium designated strain 17 inhibited the growth of Pseudomonas corrugata, and increased growth of tomato seedlings. In addition, its culture filtrate inhibited conidial germination of plant-pathogenic fungi such as Fusarium oxysporum f. sp. radicis-lycopersici, F. oxysporum f. sp. cucumerinum, and Nectria radicicola. Scanning electron microscopy revealed strain 17 colonized and persisted on the epidermal surfaces of tomato radicles and roots. These results suggest that P. putida strain 17 may serve as a biological control agent to suppress multiple soil-borne diseases for tomato plants. Increased microbial populations that suppress deleterious microorganisms including pathogens could be one of the major factors in increased tomato yield in replant soil.

The Indirect Effects of the Near Infra-Red Light-Treated Materials on Microbial Growth (근적외선을 처리한 생활용품의 향균 효과)

  • Park Kyoung-Hwa;Park Yu-Mi;Seul Kyeung-Jo;Ghim Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.3
    • /
    • pp.222-225
    • /
    • 2005
  • Stimulatory effects of near infra-red (NIR) rays radiation have been studied within the limits of photosynthesis, phototaxis, and photodermatology. While most of these studies have been done by direct NIR radiation, we investigated the effects of the NIR rays-treated materials on microbial growth. NIR in wavelength of 1,400${\~}$1,700 nm was applied for different kind of materials. Under fast growing conditions in rich media, materials treated with the NIR rays or not did not show any differences in growth of microorganisms. However, under slow growing conditions in minimal media, data showed that NIR rays-treated cloths and hygienic bands affect negatively on the growth of bacteria (Salmonella enteritidis) and fungi (Candida albicans). In addition, it was estimated that the effect of NIR rays on bacterial growth is kept going on S. enteritidis.