• Title/Summary/Keyword: microbial fuel cells (MFCs)

Search Result 44, Processing Time 0.023 seconds

Prevention of Power Overshoot and Reduction of Cathodic Overpotential by Increasing Cathode Flow Rate in Microbial Fuel Cells used Stainless Steel Scrubber Electrode (스테인리스강 수세미 전극을 사용한 미생물연료전지의 전력 오버슈트 예방과 환원조 유속 증가에 의한 환원전극 과전압 감소)

  • Kim, Taeyoung;Kang, Sukwon;Chang, In Seop;Kim, Hyun Woo;Sung, Je Hoon;Paek, Yee;Kim, Young Hwa;Jang, Jae Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.591-598
    • /
    • 2017
  • Power overshoot phenomenon was observed in microbial fuel cells (MFCs) used non-catalyzed graphite felt as cathode. Voltage loss in MFCs was mainly caused by cathode potential loss. Cheap stainless steel scrubber, which has high conductivity, and Pt/C coated graphite felt as cathode were used for overcoming power overshoot and reducing the cathode potential loss in MFCs. The MFCs used stainless steel scrubber showed no power overshoot even slow catholyte flow rate and produced 29% enhanced maximum current density ($23.9A/m^3$) than MFCs used non-catalyzed graphite felt while the power overshoot phenomenon was existed in Pt/C coated MFCs. Increasing catholyte flow rate resulted in disappearing power overshoot of MFCs used non-catalyzed graphite felt. In addition, maximum power density and current density of both MFCs used non-catalyzed graphite felt and stainless steel scrubber increased by 2-3.5 times. Cathode potential losses in all region of activation loss, ohmic loss, and mass transport loss were reduced according to increase of catholyte flow rate. Therefore, stainless steel scrubber has advantages that are economical materials as electrode and prevents power overshoot, leading to enhance electricity generation. In addition, increasing catholyte flux is one of great solution when power overshoot caused by cathodic overpotential is observed in MFCs.

Effect of ammonium on the current generation in the microbial fuel cell (암모니아성 질소가 미생물연료전지에서 전류 발생에 미치는 영향)

  • Jang, Jae Kyung;Choi, Jung Eun;Ryou, Young Sun;Lee, Sung Hyung;Kim, Jong Goo;Kang, Youn Koo;Kim, Young Hwa;Lee, Hyung Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.219.1-219.1
    • /
    • 2011
  • These studies carried out to know the effect of ammonium on the current generation in the microbial fuel cells (MFCs). MFCs used in the study were enriched with anaerobic digestion sludge and operated for 3 years using artificial wastewater (AWW). When the current was stably generated, ammonium ion with $27.0{\pm}0.0$, $51.5{\pm}0.0$, $103.5{\pm}0.0mg/L$ with acetate fed into the anode compartment. The current values under condition included ammonium were changed from its initial $6.30{\pm}0.06$ to $6.28{\pm}0.36$, $5.95{\pm}0.61$, $5.64{\pm}0.38mA$, respectively. The current value was slightly decreased to $5.64{\pm}0.38mA$ compared to $6.30{\pm}0.06mA$ generated from MFC without ammonium ion in the AWW. But After 3days operating under ammonium concentration with $103.5{\pm}0.0mg/L$, the current was unstably generated when artificial wastewater without ammonium was fed again. MFC enriched with AWW without ammonium ion was inhibited by high concentration of ammonium. At this time, the ammonium was removed 5.27~16.41 mg per day under all conditions.

  • PDF

Characteristics of Electricity Generation by Microbial Fuel Cell for Wastewater Treatment (폐수처리를 위한 미생물연료전지의 전기생산 특성)

  • Kim, Sun-Il;Lee, Sung-Wook;Kim, Kyung-Ryang;Lee, Jae-Wook;Roh, Sung-Hee
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.213-217
    • /
    • 2009
  • Microbial fuel cells (MFCs) have been known as a new alternative energy conversion technology for treating wastewater and producing electricity simultaneously. A MFC converts the chemical energy of the organic compounds to electrical energy through microbial catalysis at the anode under anaerobic conditions. To examine the performance of MFC, in this work, the characteristics of the efficiency of wastewater treatment and generation of electricity was evaluated for sewage. When acetate as a carbon source was added into the sewage, the removal efficiency of COD was increased from 75.7% to 88.2% and the voltage was increased significantly from 0.22 V to 0.4 V. The influence of distance between anode and cathode was examined and the effect of the surface area of anode was investigated under the various external resistances. It was found that the maximum power density was $610mW/m^2$ and power generation was effective when the distance between the electrodes was shorter and the surface area of the anode was smaller.

Use of Nitrate and Ferric Ion as Electron Acceptors in Cathodes to Improve Current Generation in Single-cathode and Dual-cathode Microbial Fuel Cells (Single-cathode와 Dual-cathode로 구성된 미생물연료전지에서 전류발생 향상을 위한 전자수용체로서의 Nitrate와 Ferric ion의 이용)

  • Jang, Jae Kyung;Ryou, Young Sun;Kim, Jong Goo;Kang, Youn Koo;Lee, Eun Young
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.414-418
    • /
    • 2012
  • The quantity of research on microbial fuel cells has been rapidly increasing. Microbial fuel cells are unique in their ability to utilize microorganisms and to generate electricity from sewage, pig excrement, and other wastewaters which include organic matter. This system can directly produce electrical energy without an inefficient energy conversion step. However, with MFCs maximum power production is limited by several factors such as activation losses, ohmic losses, and mass transfer losses in cathodes. Therefore, electron acceptors such as nitrate and ferric ion in the cathodes were utilized to improve the cathode reaction rate because the cathode reaction is very important for electricity production. When 100 mM nitrate as an electron acceptor was fed into cathodes, the current in single-cathode and dual-cathode MFCs was noted as $3.24{\pm}0.06$ mA and $4.41{\pm}0.08$ mA, respectively. These values were similar to when air-saturated water was fed into the cathodes. One hundred mM nitrate as an electron acceptor in the cathode compartments did not affect an increase in current generation. However, when ferric ion was used as an electron acceptor the current increased by $6.90{\pm}0.36$ mA and $6.67{\pm}0.33$ mA, in the single-cathode and dual-cathode microbial fuel cells, respectively. These values, in single-cathode and dual-cathode microbial fuel cells, represent an increase of 67.1% and 17.6%, respectively. Furthermore, when supplied with ferric ion without air, the current was higher than that of only air-saturated water. In this study, we attempted to reveal an inexpensive and readily available electron acceptor which can replace platinum in cathodes to improve current generation by increasing the cathode reaction rate.

Improvement of Anodic Performance by Using CTP Binder Containg Nickel (니켈을 함유한 콜타르 피치 결합제를 이용한 미생물연료전지 산화전극 성능개선)

  • Yoon, Hyung-Sun;Song, Young-Chae;Choi, Tae-Seon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.9
    • /
    • pp.499-504
    • /
    • 2015
  • The composite anodes of expanded graphite (EG) and multiwall carbon nanotube (MWCNT) for microbial fuel cells were fabricated by using coal tar pitch (CTP) binder containing nickel (Ni), and the effect of the anodes with the binders on the performance of the MFCs were examined in a batch reactor. During the start-up of the MFCs, quick increase in voltage was observed after a short lag phase time, indicating that the CTP binder is biocompatible. The biomass attatched on the anode surface was more at higher Ni content in the binder, as well as at smaller amount of CTP binder for the fabrication of the anode. The internal resistance of the MFC was smaller for the anode with more biomass. Based on the results, the ideal combination of CTP and Ni for the CTP binder for anode was 2 g and 0.2 g, respectively. The maximum power density was $731.8mW/m^2$, which was higher 23.7% than the anode with Nafion binder as control. The CTP binder containing Ni for the fabrication of anode is a good alternative in terms of performance and economics of MFCs.

Studies on a Feasibility of Swine Farm Wastewater Treatment using Microbial Fuel Cell (미생물연료전지의 가축분뇨 처리 가능성 연구)

  • Jang, Jae-Kyung;Kim, Se-Hee;Ryou, Young-Sun;Lee, Sung-Hyoun;Kim, Jong-Gu;Kang, Young-Goo;Kim, Young-Hwa;Choi, Jung-Eun
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.461-466
    • /
    • 2010
  • In this study the feasibility of simultaneous electricity generation and treatment of swine farm wastewater using microbial fuel cells (MFCs) was examined. Two single-chamber MFCs containing an anode filled with different ratio of graphite felt and stainless-steel cross strip was used in all tests. The proportion of stainless-steel cross strip to graphite felt in the anode of control microbial fuel cell (CMFC) was higher than that of swine microbial fuel cell (SMFC) to reduce construction costs. SMFCs produced a stable current of 18 mA by swine wastewater with chemical oxygen demand (COD) of $3.167{\pm}80\;mg/L$ after enriched. The maximum power density and current density of SMFCs were $680\;mW/m^3$ and $3,770\;mA/m^3$, respectively. In the CMFC, power density and current density was lower than that of SMFC. CODs decreased by the SMFC and CMFC from $3.167{\pm}80$ to $865{\pm}21$ and $930{\pm}14\;mg/L$, achieving 72.7% and 70.6% COD removal, respectively. The suspended solid (SS) of both fuel cells was also reduced over 99% ($4,533{\pm}67$ to $24.0{\pm}6.0\;mg/L$). The concentration of nutritive salts, ${NH_4}^+$, ${NO_3}^-$, and ${PO_4}^{3-}$, dropped by 65.4%, 57.5%, and 73.7% by the SMFC, respectively. These results were similar with those of CMFC. These results show that the microbial fuel cells using electrode with mix stainless-steel cross strip and graphite felt can treat the swine wastewater simultaneously with an electricity generation from swine wastewater.

Phylogenetic Diversity of Dominant Bacterial and Archaeal Communities in Plant-Microbial Fuel Cells Using Rice Plants

  • Ahn, Jae-Hyung;Jeong, Woo-Suk;Choi, Min-Young;Kim, Byung-Yong;Song, Jaekyeong;Weon, Hang-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1707-1718
    • /
    • 2014
  • In this study, the phylogenetic diversities of bacterial and archaeal communities in a plant-microbial fuel cell (P-MFC) were investigated together with the environmental parameters, affecting its performance by using rice as a model plant. The beneficial effect of the plant appeared only during a certain period of the rice-growing season, at which point the maximum power density was approximately 3-fold higher with rice plants. The temperature, electrical conductivity (EC), and pH in the cathodic and anodic compartments changed considerably during the rice-growing season, and a higher temperature, reduced difference in pH between the cathodic and anodic compartments, and higher EC were advantageous to the performance of the P-MFC. A 16S rRNA pyrosequencing analysis showed that the 16S rRNAs of Deltaproteobacteria and those of Gammaproteobacteria were enriched on the anodes and the cathodes, respectively, when the electrical circuit was connected. At the species level, the operational taxonomic units (OTUs) related to Rhizobiales, Geobacter, Myxococcus, Deferrisoma, and Desulfobulbus were enriched on the anodes, while an OTU related to Acidiferrobacter thiooxydans occupied the highest proportion on the cathodes and occurred only when the circuit was connected. Furthermore, the connection of the electrical circuit decreased the abundance of 16S rRNAs of acetotrophic methanogens and increased that of hydrogenotrophic methanogens. The control of these physicochemical and microbiological factors is expected to be able to improve the performance of P-MFCs.

Comparison of Electricity Generation Efficiencies depending on the Reactor Configurations in Microbial Fuel Cells (미생물 연료 전지의 반응조 형상에 따른 전기 생산효율 비교)

  • Lee, Yunhee;Oa, Seong-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.681-686
    • /
    • 2010
  • Two different MFC designs were evaluated in batch mode: single compartment combined membrane-electrodes (SCME) design and twin-compartment brush-type anode electrodes (TBE) design (single chamber with two air cathodes and brush anodes at each side of the reactor). In SCME MFC, carbon anode and cathode electrodes were assembled with a proton exchange membrane (PEM). TBE MFC was consisted of brush-type anode and carbon cloth cathode electrodes without the PEM. A brush-type anode was fabricated with carbon fibers and was placed close to the cathode electrode to reduce the internal resistance. Substrates used in this study were glucose, leachate from cattle manure, or sucrose at different concentrations with phosphate buffer solution (PBS) of 200 mM to increase the conductivity thereby reduce the internal resistance. Hydrogen generating bacteria (HGB) were only inoculated in TBE MFC. The peak power densities ($P_{peak}$) produced from the SCME systems fed with glucose and leachate were 18.8 and $28.7mW/m^2$ at external loads of 1000 ohms, respectively. And the $P_{peak}$ produced from TBE MFC were 40.1 and $18.3mW/m^2$ at sucrose concentration of 5 g/L and external loads of 470 ohms, with a mediator (2-hydroxy-1, 4-naphthoquinone) and without the mediator, respectively. The maximum power density ($P_{max}$) produced from mediator present TBE MFC was $115.3mW/m^2$ at 47 ohms of an external resistor.

Effects of Operating Temperature and Electrode Gap Distance on Electricity Generation in Microbial Fuel Cells (미생물연료전지의 전기생산에 미치는 운전온도 및 전극간 거리의 영향)

  • Choi, Young-Dae;Lee, Myoung-Eun;Song, Young-Chae;Woo, Jung-Hui;Yoo, Kyu-Seon;Lee, Chae-Young;Chung, Jae-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.1
    • /
    • pp.41-49
    • /
    • 2012
  • The effects of operating temperature and electrode gap distance on electricity generation were investigated in two-chamber type MFCs. Voltages across the external resistor $(100\;{\Omega})$ were enhanced approximately 1.4 times by the increase of operating temperature from $30^{\circ}C$ to $34^{\circ}C$. The open circuit voltages (OCVs) were increased by the increase of temperature and the maximum power of MFC was obtained at higher current condition by increasing temperature and reducing electrode gap distance. The maximum power densities were enhanced from 1.9 to 2.4 times according to the experimented electrode gap distances by increasing temperature of $4^{\circ}C$. The electricity generation was increased with the decrease of electrode gap distance. The effects of operating temperature and electrode gap distance were closely connected with the internal resistance of MFC system. That is, the increase of temperature and decrease of electrode gap distance reduced the internal resistance of MFC, resulting in the enhancement of electricity generation of MFC.

Characteristics of Organic Material Removal and Electricity Generation in Continuously Operated Microbial Fuel Cell (연속류식 미생물연료전지의 유기물 제거 및 전기 발생 특성)

  • Kim, Jeong-Gu;Jeong, Yeon-Koo;Park, Song-In
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.57-65
    • /
    • 2010
  • Two types of microbial fuel cells(MFC) were continuously operated using synthetic wastewater. One was conventional two-chambered MFC using proton exchange membrane(PEM-MFC), the other was upflow type membraneless MFC(ML-MFC). Graphite felt was used as a anode in PEM-MFC. In membraneless MFC, two MFCs were operated using porous RVC(reticulated vitreous carbon) as a anode. Graphite felt was used as a cathode in all experiments. In experiment of PEM-MFC, the COD removal rate based on the surface area of anode was about $3.0g/m^2{\cdot}d$ regardless of organic loading rate. And the coulombic efficiency amounted to 22.4~23.4%. The acetic acid used as a fuel was transferred through PEM from the anodic chamber to cathodic chamber. The COD removal rate in ML-MFC were $9.3{\sim}10.1g/m^2{\cdot}d$, which indicated the characteristics of anode had no significant effects on COD removal. Coulombic efficiency were 3.6~3.7 % in both cases of ML-MFC experiments, which were relatively small. It was also observed that the microbial growth in cathodic chamber had an adverse effects on the electricity generation in membraneless MFC.