• Title/Summary/Keyword: microbial enzyme

Search Result 570, Processing Time 0.023 seconds

Enzyme and Microbial Activities in Paddy Soil Amended Continuously with Different Fertilizer Systems

  • Gadagi, Ravi;Park, Chang-Young;Im, Geon-Jae;Lee, Dong-Chang;Chung, Jong-Bae;Singvilay, Olayvanh;Sa, Tong-Min
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.5
    • /
    • pp.325-329
    • /
    • 2001
  • Soil enzyme and microbial activities are affected by fertilizer and compost applications and can be used as sensitive indicators of ecological stability. Microbial population and soil enzymes viz., dehydrogenase, urease, acid phosphatase and aryl-sulphatase were determined in the long-term fertilizer and compost applied paddy soil. Soil samples were collected from the four treatments (control, compost, NPK and compost+NPK). Long-term NPK+compost application significantly increased activities of urease, dehydrogenase and acid phosphatase than all other treatments. The compost application enhanced activities of urease, dehydrogenase and acid phosphatase than the NPK application. However, arylsulfatase activity was not significantly different between compost and fertilizer application. The highest microbial population was recorded in the NPK+compost treatment. The compost application also resulted in higher microbial population than the NPK application. The above results indicate that ecological stability could be maintained by application of compost alone or with NPK.

  • PDF

Characterization of L-asparaginase-producing Trichoderma spp. Isolated from Marine Environments

  • Woon-Jong, Yu;Dawoon, Chung;Yong Min, Kwon;Seung Sub, Bae;Eun-Seo, Cho;Hye Suck, An;Grace, Choi
    • Journal of Marine Life Science
    • /
    • v.7 no.2
    • /
    • pp.121-128
    • /
    • 2022
  • L-asparaginase (ASNase) is a therapeutic enzyme used to treat acute lymphoblastic leukemia. Currently, the most widely used ASNases are originated from bacteria. However, owing to the adverse effects of bacterial ASNases, new resources for ASNase production should be explored. Fungal enzymes are considered efficient and compatible resources of natural products for diverse applications. In particular, fungal species belonging to the genus Trichoderma are well-known producers of several commercial enzymes including cellulase, chitinase, and xylanase. However, enzyme production by marine-derived Trichoderma spp. remains to be elucidated. While screening for extracellular ASNase-producing fungi from marine environments, we found four strains showing extracellular ASNase activity. Based on the morphological and phylogenetic analyses using sequences of translation elongation factor 1-alpha (tef1α), the Trichoderma isolates were identified as T. afroharzianum, T. asperellem, T. citrinoviride, and Trichoderma sp. 1. All four strains showed different ASNase activities depending on the carbon sources. T. asperellem MABIK FU00000795 showed the highest ASNase value with lactose as a carbon source. Based on our findings, we propose that marine-derived Trichoderma spp. are potential candidates for novel ASNase production.

Functional Analyses and Application of Microbial Lactonohydrolases

  • Shimizu, Sakayu;Honda, Kohsuke;Kataoka, Michihiko
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.3
    • /
    • pp.130-137
    • /
    • 2002
  • Microbial lactonohydrolases (intramolecular ester bond-hydrolyzing enzymes) with unique properties were found. The lactonohydrolase from Fusarium oxysporum catalyzes enantiose-lective hydrolysis of aldonate lactones and D-pantoyl lactone (D-PL). This enzyme is useful for the large-scale optical resolution of racemic PL. The Agrobacterium tumefaciens enzyme catalyzes asymmetric hydrolysis of PL, but the stereospecificity is opposite to that of the Fusarium enzyme. Dihydrocoumarin hydrolase (DHase) from Acinetobacter calcoaceticus is a bifunctional enzyme, which catalyzes not only hydrolysis of aromatic lactones but also bromination of monochlorodi-medon in the presence of H$_2$O$_2$and dihydrocoumarin. DHase also hydrolyzes several linear esters, and is useful for enantioselective hydrolysis of methyl DL-$\beta$-acetylthioisobutyrate and regioselective hydrolysis of methyl cetraxate.

Production and Characterization of a Novel Microbial Transglutaminase from Actinomadura sp. T-2

  • Kim, Hyun-Soo;Jung, Sang-Hong;Lee, In-Seon;Yu, Tae-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.187-194
    • /
    • 2000
  • An actinomycetes strain, T-2, which produces transglutaminase (EC 2.3.2.13), was isolated from soil and identified as belonging to the Actinomadura sp., based on taxonomc studies. The conditions for the transglutaminase production and its enzymatic properties were investigated. The optimum components for the transglutaminase production were 2% glucose, 1% polypeptone and soytone, and 0.1% MnCl2. The optimum pH and temperature of the enzyme reaction were pH 8.0 and $45^{\circ}C$, respectively. The enzyme was stable within the pH range of 5.0-9.0 and $30^{\circ}C-45^{\circ}C$. The novel enzyme required no calcium ions for its activity. This enzyme polymerized various proteins such as casien, soy protein, hemoglobin, egg white, gelatin, and soybean milk.

  • PDF

Purification and Characterization of $Co^{2+}-Activated$ Extracellular Metalloprotease from Bacillus sp. JH108

  • Jung, Hyun-Joo;Kim, Haek-Won;Kim, Jong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.861-869
    • /
    • 1999
  • An extracellular protease was purified to homogeneity from the culture supernatant of psychrotrophic bacteria Bacillus sp. JH 108 using procedures including ammonium sulfate fractionation, anion exchange chromatography, gel filtration chromatography, and cation exchange chromatography. The enzyme exhibited a molecular weight of 36 kDa, an optimum pH of 8 to 9, and optimum temperature of $60^{\circ}C$. The enzyme preferentially hydrolyzed leucine at the N-terminus of peptides and thus can be classified as an aminopeptidase. It was strongly inhibited by metal chelating agents such as EDTA and l, l0-phenanthroline. The activity lost by EDTA was restored with $Zn^{2+}{\;}or{\;}Co^{2+}$. These divalent cations also stimulated the native enzyme. This suggests that the enzyme is a metalloprotease acting as a leucine aminopeptidase.

  • PDF

Effect of Oyster Shell Meal on Improving Soil Microbiological Activity (굴패화석 비료 시용이 토양의 생물학적 활성에 미치는 영향)

  • Lee, Ju-Young;Lee, Chang-Hoon;Ha, Byung-Hyun;Kim, Seok-Cheol;Lee, Do-Kyoung;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.281-286
    • /
    • 2005
  • The effect of oyster shell meal, which is made of a simple crushing and alkaline calcium materials, on soil microbial properties, microbial biomass C, N and P contents, and enzyme activities were evaluated in silt loam soil. The oyster shell meal fertilizer was added at the rates of 0, 4, 8, 12 and $16Mg\;ha^{-1}$. Microbial biomass C, N and P contents were significantly increased with increasing application of oyster shell meal. Soil enzyme activities, such as urease, ${\beta}$-glucosidase and alkaline phosphomonesterase were increased significantly by shell meal application, due to increased soil pH towards neutral range and increased nutrient availability in soil. In particular, the increased microbial biomass P content and phosphomonoesterase activities were strongly correlated with available P content in soil. Conclusively, oyster shell meal fertilizer could be a good supplement to improve soil microbial activities.

Gene Cloning of Streptomyces Phospholipase D P821 Suitable for Synthesis of Phosphatidylserine

  • Moon Min-Woo;Lee Jung-Kee;Oh Tae-Kwang;Shin Chul-Soo;Kim Hyung-Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.408-413
    • /
    • 2006
  • A strain, P821, with phospholipase D activity was isolated from soil and identified as a Streptomyces species. The phospholipase D enzyme was purified from a culture broth of the isolated strain using ammonium sulfate precipitation and DEAE-Sepharose, phenyl-Sepharose, and Superose 12 HR column chromatographies. The purified enzyme exhibited an optimum temperature and pH of $55^{\circ}C$ and 6.0, respectively, in the hydrolysis of phosphatidylcholine and remained stable up to $60^{\circ}C$ within a pH range of 3.5-8.0. The enzyme also catalyzed a transphosphatidylation reaction to produce phosphatidylserine with phosphatidylcholine and serine substrates. The optimum conditions for the transphosphatidylation were $30^{\circ}C$ and pH 5.0, indicating quite different optimum conditions for the hydrolysis and transphosphatidylation reactions. The gene encoding the enzyme was cloned by Southern hybridization and colony hybridization using a DNA probe designed from the conserved regions of other known phospholipase D enzymes. The resulting amino acid sequence was most similar to that of the PLD enzyme from Streptomyces halstedii (89.5%). Therefore, the enzyme was confirmed to be a phospholipase D with potential use in the production of phosphatidylserine.

Studies on Microbial Extracellular $\beta$-Gala-ctosidase

  • Lee, Keun-Eok
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1979.04a
    • /
    • pp.113.2-114
    • /
    • 1979
  • $\beta-Galactosidase$ is an enzyme which catalizes hydrolysis of lactose, a natural substrate, to glucose and galctose and transferring some monosac-charide units to active acceptors as sugar or alcohol. The occurence of $\beta-Galactosidase$ is known in various microorganisms, animals and higher plants and has been studied by many investigatigators. Especially, a great deal of articles for the enzyme of E. coli have been presented in genetic control mechanism and induction-repression effects of proteins, On the other hand, in the dairly products industry, it is important to hydrolyes lactosd which is the principal sugar of milk and milk products. During the last few years, the interest in enzymatic hydrolysis of milk lactose has teen increased, because of the lactose intolerence in large groups of the population. Microbial $\beta-Galactosidases$ are considered potentially most suitable for processing milk to hydrolyse lactose and, in recent years, the immobilized enzyme from yeast has been examined. Howev, most of the microbial $\beta-Gal$ actosidase are intracellular enzymes, except a few fungal $\beta-Gala-$ ctosidases, and extracellular $\beta-Galactosidase$ which may be favorable to industrial applieation is not so well investigated. On this studies, a mold producing a potent extracellular $\beta-Galactosidase$ was isolated from soil and identified as an imperfect fungus, Beauveria bassians. In this strain, both extracellular and intracellular $\beta-Galactosidases$ were produced simultaneously and a great increase of the extracellular production was acheved by improving the cultural conditions. The extracellular enzyme was purified more than 1, 000 times by procedures including Phosphocellulose and Sephadex G-200 chromatographies. Several characteristics of the enzymewas clarified with this preparation. The enzyme has a main subunit of molecular weight of 80, 000 which makes an active aggregate. And at neutral pH range, it has optimum pH for activity and stability. The Km value was determined to be 0.45$\times$10$^{-3}$ M for $o-Nitrophenyl-\beta-Galactoside.$ In any event, it is interesting to sttudy the $\beta-Galactosidase$ of B. bassiana for the mechanism of secretion and conformational structure of enzyme.

  • PDF

Characterization of Thermostable Tyrosine Phenol-Lyase from an Obligatory Symbiotic Thermophile, Symbiobacterium sp. SC-1

  • Lee, Seung-Goo;Hong, Seung-Pyo;Kwak, Mi-Sun;Esaki, Nobuyoshi;Sung, Moon-Hee
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.480-485
    • /
    • 1999
  • Tyrosine phenol-lyase of thermophilic Symbiobacterium sp. SC-1, which is obligately and symbiotically dependent on thermophilic Bacillus sp. SK-1, was purified and characterized. The enzyme is composed of four identical subunits and contains approximately 1 mol of pyridoxal 5'-phosphate (PLP) per mol subunit as a cofactor. The enzyme showed absorption maxima at 330 and 420 nm, and lost this absorption profile by treatment with phenylhydrazine. The apparent dissociation constsnt, $K'_D$, for PLP was determined with the apoenzyme to be about $1.2\;{\mu}M$. The isoelectric point was 4.9. The optimal temperature and pH for the $\alpha,\beta$-elimination of L-tyrosine were found to be $80^{\circ}C$ and pH 8.0, respectively. The substrate specificity of the enzyme was very broad: L-amino acids including L-tyrosine, 3,4-dihydroxyphenyl-L-alanine (L-DOPA), L-cysteine, L-serine, S-methyl-L-cysteine, $\beta$-chloro-L-alanine, and S-(o-nitrophenyl)-L-cysteine all served as substrates. D-Tyrosine and D-serine were also decomposed into pyruvic acid and ammonia at rates of 7% and 31% relative to their corresponding L-enantiomers, respectively. D-Alanine, which was inert as a substrate in a, $\beta$-elimination, was the only D-amino acid racemized by the enzyme. The $K_m$ values for L-tyrosine, L-DOPA, S-(o-nitrophenyl)-L-cysteine, $\beta$-chloro-L-alanine, and S-methyl-L-cysteine were 0.19, 9.9, 0.36, 12, and 5.5 mM, respectively.

  • PDF