• 제목/요약/키워드: microbial degradation aromatic compound

검색결과 3건 처리시간 0.019초

방향족화합물이 함유된 폐수의 생물학적 처리 (Microbial Degradation of Aromatic Compounds in Industrial Wastewater)

  • 박춘호;김용기;오평수
    • 한국미생물·생명공학회지
    • /
    • 제19권6호
    • /
    • pp.631-636
    • /
    • 1991
  • 방향족화합물을 생분해하는 미생물을 분리하여 생물학적 처리에 응용하기 위해 폐수 및 토양에서 150종의 균을 분리하였다. 그 중에서 COD 제거율과 방향족화합물의 이용능이 가장 우수한 HC107균을 선발하여 Pseudomonas sp.로 동정하였다. 활성슬러지 장치에서 Pseudomonas sp. HC107 배양액을 2ml/day씩 처리하면서 화학, 제약 및 도료공장의 폐수를 혼합하여 연속처리한 결과 처리수의 COD, BOD 및 phenol 제거율이 평균 92.5%, 95.53 및 93%.5로 나타났다.

  • PDF

Microbial Degradation of Monohydroxybenzoic Acids

  • Kim, Chi-Kyung;Tim
    • Journal of Microbiology
    • /
    • 제38권2호
    • /
    • pp.53-61
    • /
    • 2000
  • Hydroxybenzoic acids are the most important intermediates in the degradative pathways of various aromatic compounds. Microorganisms catabolize aromatic compounds by converting them to hydroxylated intermediates and then cleave the benzene nucleus with ring dioxygenases. Hydroxylation of the benzene nucleus of an aromatic compound is an essential step for the initiation and subsequent disintegration of the benzene ring. The incorporation of two hydroxyl groups is essential for the labilization of the benzene nucleus. Monohydroxybenzoic acids such as 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, and 4-hydrosybenzoic acid, opr pyrocattechuic acid that are susceptible for subsequent oxygenative cleavage of the benzene ring. These terminal aromatic intermediates are further degraded to cellular components through ortho-and/or meta-cleavage pathways and finally lead to the formation of constituents of the TCA cycle. Many groups of microorganisms have been isolated as degraders of hydroxybenzoic acids with diverse drgradative routes and specific enzymes involved in their metabolic pahtway. Various microorganisms carry out unusual non-oxidative decarboxylation of aromatic acids and convert them to respective phenols which have been documented. Futher, Pseudomonas and Bacillus spp. are the most ubiquitous microorganisms, being the principal components of microflora of most soil and water enviroments.

  • PDF

혐기성 미생물에 의한 토양내 다핵성방향족화합물의 생물학적 분해 (Biodegradation of Polynuclear Aromatic Hydrocarbons in soil using microorganisms under anaerobic conditions)

  • 안익성
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.89-91
    • /
    • 2000
  • Polynuclear aromatic hydrocarbon (PAH) compounds are highly carcinogenic chemicals and common groundwater contaminants that are observed to persist in soils. The adherence and slow release of PAHs in soil is an obstacle to remediation and complicates the assessment of cleanup standards and risks. Biological degradation of PAHs in soil has been an area of active research because biological treatment may be less costly than conventional pumping technologies or excavation and thermal treatment. Biological degradation also offers the advantage to transform PAHs into non-toxic products such as biomass and carbon dioxide. Ample evidence exists for aerobic biodegradation of PAHs and many bacteria capable of degrading PAHs have been isolated and characterized. However, the microbial degradation of PAHs in sediments is impaired due to the anaerobic conditions that result from the typically high oxygen demand of the organic material present in the soil, the low solubility of oxygen in water, and the slow mass transfer of oxygen from overlying water to the soil environment. For these reasons, anaerobic microbial degradation technologies could help alleviate sediment PAH contamination and offer significant advantages for cost-efficient in-situ treatment. But very little is known about the potential for anaerobic degradation of PAHs in field soils. The objectives of this research were to assess: (1) the potential for biodegradation of PAH in field aged soils under denitrification conditions, (2) to assess the potential for biodegradation of naphthalene in soil microcosms under denitrifying conditions, and (3) to assess for the existence of microorganisms in field sediments capable of degrading naphthalene via denitrification. Two kinds of soils were used in this research: Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS). Results presented in this seminar indicate possible degradation of PAHs in soil under denitrifying conditions. During the two months of anaerobic degradation, total PAH removal was modest probably due to both the low availability of the PAHs and competition with other more easily degradable sources of carbon in the sediments. For both Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS), PAH reduction was confined to 3- and 4-ring PAHs. Comparing PAH reductions during two months of aerobic and anaerobic biotreatment of MHS, it was found that extent of PAHreduction for anaerobic treatment was compatible with that for aerobic treatment. Interestingly, removal of PAHs from sediment particle classes (by size and density) followed similar trends for aerobic and anaerobic treatment of MHS. The majority of the PAHs removed during biotreatment came from the clay/silt fraction. In an earlier study it was shown that PAHs associated with the clay/silt fraction in MHS were more available than PAHs associated with coal-derived fraction. Therefore, although total PAH reductions were small, the removal of PAHs from the more easily available sediment fraction (clay/silt) may result in a significant environmental benefit owing to a reduction in total PAH bioavailability. By using naphthalene as a model PAH compound, biodegradation of naphthalene under denitrifying condition was assessed in microcosms containing MHS. Naphthalene spiked into MHS was degraded below detection limit within 20 days with the accompanying reduction of nitrate. With repeated addition of naphthalene and nitrate, naphthalene degradation under nitrate reducing conditions was stable over one month. Nitrite, one of the intermediates of denitrification was detected during the incubation. Also the denitrification activity of the enrichment culture from MHS slurries was verified by monitoring the production of nitrogen gas in solid fluorescence denitrification medium. Microorganisms capable of degrading naphthalene via denitrification were isolated from this enrichment culture.

  • PDF