• Title/Summary/Keyword: microbial community structures

Search Result 74, Processing Time 0.028 seconds

Molecular and Ecological Analyses of Microbial Community Structures in Biofilms of a Full-Scale Aerated Up-Flow Biobead Process

  • Ju, Dong-Hun;Choi, Min-Kyung;Ahn, Jae-Hyung;Kim, Mi-Hwa;Cho, Jae-Chang;Kim, Tae-Sung;Kim, Tae-San;Seong, Chi-Nam;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.253-261
    • /
    • 2007
  • Molecular and cultivation techniques were used to characterize the bacterial communities of biobead reactor biofilms in a sewage treatment plant to which an Aerated Up-Flow Biobead process was applied. With this biobead process, the monthly average values of various chemical parameters in the effluent were generally kept under the regulation limits of the effluent quality of the sewage treatment plant during the operation period. Most probable number (MPN) analysis revealed that the population of denitrifying bacteria was abundant in the biobead #1 reactor, denitrifying and nitrifying bacteria coexisted in the biobead #2 reactor, and nitrifying bacteria prevailed over denitrifying bacteria in the biobead #3 reactor. The results of the MPN test suggested that the biobead #2 reactor was a transition zone leading to acclimated nitrifying biofilms in the biobead #3 reactor. Phylogenetic analysis of 16S rDNA sequences cloned from biofilms showed that the biobead #1 reactor, which received a high organic loading rate, had much diverse microorganisms, whereas the biobead #2 and #3 reactors were dominated by the members of Proteobacteria. DGGE analysis with the ammonia monooxygenase (amoA) gene supported the observation from the MPN test that the biofilms of September were fully developed and specialized for nitrification in the biobead reactor #3. All of the DNA sequences of the amoA DGGE bands were very similar to the sequence of the amoA gene of Nitrosomonas species, the presence of which is typical in the biological aerated filters. The results of this study showed that organic and inorganic nutrients were efficiently removed by both denitrifying microbial populations in the anaerobic tank and heterotrophic and nitrifying bacterial biofilms well-formed in the three functional biobead reactors in the Aerated Up-Flow Biobead process.

Comparative Analysis of the Community of Culturable Bacteria Associated with Sponges, Spirastrella abata and Spirastrella panis by 16S rDNA-RFLP (16S rDNA-RFLP에 의한 Spirastrella abata와 Spirastrella panis 해면에 서식하는 배양가능한 공생세균 군집의 비교)

  • Cho, Hyun-Hee;Park, Jin-Sook
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.155-162
    • /
    • 2009
  • A cultivation-based approach was employed to compare the culturable bacterial diversity associated with two phylogenetically closely related marine sponges, Spirastrella abata and Spirastrella panis, which have geologically overlapping distribution patterns. The bacteria associated with sponge were cultivated using MA medium supplemented with 3% sponge extracts. Community structures of the culturable bacteria of the two sponge species were analyzed with PCR-RFLP (restriction fragment length polymorphism) based on 16S rDNA sequences. The RFLP fingerprinting of 16S rDNA digested with HaeIII and MspI, revealed 24 independent RFLP types, in which 1-5 representative strains from each type were partially sequenced. The sequence analysis showed >98.4% similarity to known bacterial species in public databases. Overall, the microbial populations of two sponges investigated were found to be the members of the classes; Alphaproteobacteria, Gammaproteobacteria, Firmicutes, and Actinobacteria. The Alphaproteobacteria were predominant in the bacterial communities of the two sponges. Gammaproteobacteria represented 38.5% of bacterial community in S. abata. Whereas only 1.6% of this class was present in S. panis. Bacillus species were dominat in S. panis. Bacillus species were found to be 44.3% of bacterial species in S. panis, while they were only 9.7% in S. abata. It is interesting to note that Planococcus maritimus (8.1%, phylum Firmicutes) and Psychrobacter nivimaris (28.9%, phylum Gammaproteobacteria) were found only in S. abata. This result revealed that profiles of bacterial communities from the sponges with a close phylogenetic relationship were highly species-specific.

Effect of Quartz Porphyry on Growth of Creeping Bentgrass (Agrostis stolonifera) and Soil Bacterial Community Structures (맥반석처리가 골프장 잔디의 생육과 토양미생물의 군집구조에 미치는 영향)

  • Koh, Sung-Cheol;Choi, Jung-Hye;Kim, Byung-Hyuk;Kim, Sang-Eun
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.317-325
    • /
    • 2008
  • Recently there are difficulties in management of golf courses because of an ever increasing demand for golf as a leisure sports. Hence natural minerals as an amendment could be applied to improve and manage the physicochemical properties of the golf course soils in an environment-friendly way. In this study, quartz porphyry, which has been shown to be a good soil amendment for crop production, was tested for its effect on physicochemical properties of the golf course soil, growth of creeping bentgrass (Agrostis stolonifera) and changes of soil microbial communities in the soil. In general, amendment of 20% quartz porphyry into the soil turned out to be most effective in enhancing a proper growth of the grass leaves and roots. DGGE profile data showed that eubacterial species richness was also the highest at this level of the mineral treatment in which Actinobacteria and ${\alpha}$-Proteobacteria were the dominant phyla. This appeared to be attributed to a low level of soluble organic matter content and decreased concentration of cations such as $Ca^{2+}$, $Mg^{2+}$, and $K^+$.

Linking growth performance and carcass traits with enterotypes in Muscovy ducks

  • Qian Fan;Yini Xu;Yingping Xiao;Caimei Yang;Wentao Lyu;Hua Yang
    • Animal Bioscience
    • /
    • v.37 no.7
    • /
    • pp.1213-1224
    • /
    • 2024
  • Objective: Enterotypes (ETs) are the clustering of gut microbial community structures, which could serve as indicators of growth performance and carcass traits. However, ETs have been sparsely investigated in waterfowl. The objective of this study was to identify the ileal ETs and explore the correlation of the ETs with growth performance and carcass traits in Muscovy ducks. Methods: A total of 200 Muscovy ducks were randomly selected from a population of 5,000 ducks at 70-day old, weighed and slaughtered. The growth performance and carcass traits, including body weight, dressed weight and evidenced weight, dressed percentage, percentage of apparent yield, breast muscle weight, leg muscle weight, percentage of leg muscle and percentage of breast muscle, were determined. The contents of ileum were collected for the isolation of DNA and 16S rRNA gene sequencing. The ETs were identified based on the 16S rRNA gene sequencing data and the correlation of the ETs with growth performance and carcass traits was performed by Spearman correlation analysis. Results: Three ETs (ET1, ET2, and ET3) were observed in the ileal microbiota of Muscovy ducks with significant differences in number of features and α-diversity among these ETs (p<0.05). Streptococcus, Candida Arthritis, and Bacteroidetes were the presentative genus in ET1 to ET3, respectively. Correlation analysis revealed that Lactococcus and Bradyrhizobium were significantly correlated with percentage of eviscerated yield and leg muscle weight (p<0.05) while ETs were found to have a close association with percentage of eviscerated yield, leg muscle weight, and percentage of leg muscle in Muscovy ducks. However, the growth performance of ducks with different ETs did not show significant difference (p>0.05). Lactococcus were found to be significantly correlated with leg muscle weight, dressed weight, and percentage of eviscerated yield. Conclusion: Our findings revealed a substantial variation in carcass traits associated with ETs in Muscovy ducks. It is implied that ETs might have the potential to serve as a valuable biomarker for assessing duck carcass traits. It would provide novel insights into the interaction of gut microbiota with growth performance and carcass traits of ducks.