• Title/Summary/Keyword: microarray design

Search Result 45, Processing Time 0.022 seconds

Change of Insulin-like Growth Factor Gene Expression in Chinese Hamster Ovary Cells Cultured in Serum-free Media

  • Park, Hong-Woo;An, Sung-Kwan;Choe, Tae-Boo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.319-324
    • /
    • 2006
  • Although the sera used in animal cell culture media provide the macromolecules, nutrients, hormones, and growth factors necessary to support cell growth, it could also be an obstacle to the production of recombinant proteins in animal cell culture systems used in many sectors of the biotechnology industry. For this reason, many research groups, including our laboratory, have been trying to develop serum-free media (SFM) or serum-supplemented media (SSM) for special or multi-purpose cell lines. The Chinese hamster ovary (CHO) cell, for example, is frequently used to produce proteins and is especially valuable in the large-scale production of pharmaceutically important proteins, yet information about its genome is lacking. Also, SFMs have only been evaluated by comparing growth patterns for cells grown in SFMs with those grown in SSM or by measuring the titer of the target protein obtained from cells grown in each type of medium. These are not reliable methods of obtaining the type of information needed to determine whether an SFM should be replaced with an SSM. We carried out a cDNA microarray analysis to evaluate MED-3, an SFM developed in our laboratory, as a CHO culture medium When CHO cells were cultured in MED-3 instead of an SSM, several genes associated with cell growth were down-regulated, although this change diminished over time. We found that the insulin-like growth factor (IGF) gene was representative of the proteins that were down-regulated in cells cultured in MED-3. When several key supplements - including insulin, transferrin, ethanolamine, and selenium - were removed from MED-3, the IGF expression was consistently down- regulated and cell growth decreased proportionately. Based on these results, we concluded that when an SFM is used as a culture medium, it is important to supplement it with substances that can help the cells maintain a high level of IGF expression. The data presented in this study, therefore, might provide useful information for the design and development of SFM or SSM, as well as for the design of genome-based studies of CHO cells to determine how they can be used optimally for protein production in pharmaceutical and biomedical research.

SOP (Search of Omics Pathway): A Web-based Tool for Visualization of KEGG Pathway Diagrams of Omics Data

  • Kim, Jun-Sub;Yeom, Hye-Jung;Kim, Seung-Jun;Kim, Ji-Hoon;Park, Hye-Won;Oh, Moon-Ju;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.3
    • /
    • pp.208-213
    • /
    • 2007
  • With the help of a development and popularization of microarray technology that enable to us to simultaneously investigate the expression pattern of thousands of genes, the toxicogenomics experimenters can interpret the genome-scale interaction between genes exposed in toxicant or toxicant-related environment. The ultimate and primary goal of toxicogenomics identifies functional context among the group of genes that are differentially or similarly coexpressed under the specific toxic substance. On the other side, public reference databases with transcriptom, proteom, and biological pathway information are needed for the analysis of these complex omics data. However, due to the heterogeneous and independent nature of these databases, it is hard to individually analyze a large omics annotations and their pathway information. Fortunately, several web sites of the public database provide information linked to other. Nevertheless it involves not only approriate information but also unnecessary information to users. Therefore, the systematically integrated database that is suitable to a demand of experimenters is needed. For these reasons, we propose SOP (Search of Omics Pathway) database system which is constructed as the integrated biological database converting heterogeneous feature of public databases into combined feature. In addition, SOP offers user-friendly web interfaces which enable users to submit gene queries for biological interpretation of gene lists derived from omics experiments. Outputs of SOP web interface are supported as the omics annotation table and the visualized pathway maps of KEGG PATHWAY database. We believe that SOP will appear as a helpful tool to perform biological interpretation of genes or proteins traced to omics experiments, lead to new discoveries from their pathway analysis, and design new hypothesis for a next toxicogenomics experiments.

The Design Of Microarray Classification System Using Combination Of Significant Gene Selection Method Based On Normalization. (표준화 기반 유의한 유전자 선택 방법 조합을 이용한 마이크로어레이 분류 시스템 설계)

  • Park, Su-Young;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2259-2264
    • /
    • 2008
  • Significant genes are defined as genes in which the expression level characterizes a specific experimental condition. Such genes in which the expression levels differ significantly between different groups are highly informative relevant to the studied phenomenon. In this paper, first the system can detect informative genes by similarity scale combination method being proposed in this paper after normalizing data with methods that are the most widely used among several normalization methods proposed the while. And it compare and analyze a performance of each of normalization methods with multi-perceptron neural network layer. The Result classifying in Multi-Perceptron neural network classifier for selected 200 genes using combination of PC(Pearson correlation coefficient) and ED(Euclidean distance coefficient) after Lowess normalization represented the improved classification performance of 98.84%.

Clinical Study for YMG-1, 2's Effects on Learning and Memory Abilities (육미지황탕가감방-1, 2가 학습과 기억능력에 미치는 영향에 관한 임상연구)

  • Park Eun Hye;Chung Myung Suk;Park Chang Bum;Chi Sang Eun;Lee Young Hyurk;Bae Hyun Su;Shin Min Kyu;Kim Hyun taek;Hong Moo Chang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.5
    • /
    • pp.976-988
    • /
    • 2002
  • The aim of this study was to examine the memory and attention enhancement effect of YMG-1 and YMG-2, which are modified herbal extracts from Yukmijihwang-tang (YMJ). YMJ, composing six herbal medicine, has been used for restoring the normal functions of the body to consolidate the constitution, nourishing and invigorating the kidney functions for hundreds years in Asian countries. A series of studies reported that YMJ and its components enhance memory retention, protects neuronal cell from reactive oxygen attack and boost immune activities. Recently the microarray analysis suggested that YMG-1 protects neurodegeneration through modulating various neuron specific genes. A total of 55 subjects were divided into three groups according to the treatment of YMG-1 (n=20), YMG-2 (n=20) and control (C; n=15) groups. Before treatments, all of subjects were subjected to the assessments on neuropsychological tests of K-WAIS test, Rey-Kim memory test, and psychophysiological test of Event-Related Potential (ERP) during auditory oddball task and repeated word recognition task. They were repeatedly assessed with the same methods after drug treatment for 6 weeks. Although no significant effect of drug was found in Rey-Kim memory test, a significant interaction (P = .010, P < 0.05) between YMG-2 and C groups was identified in the scores digit span and block design, which are the subscales of K-WAIS. The very similar but marginal interaction (P = .064) between YMG-1 and C groups was found too. In ERP analysis, only YMG-1 group showed decreasing tendency of P300 latency during oddball task while the others tended to increase, and it caused significant interaction between session and group (p= .004). This result implies the enhancement of cognitive function in due to consideration of relationship between P300 latency and the speed of information processing. However, no evidence which could demonstrate the significant drug effect was found in neither amplitude or latency. These results come together suggest that YMG-1, 2 may enhance the attention, resulting in enhancement of memory processing. For elucidating detailed mechanism of YMG on learning and memory, the further studies are necessary.

Application and perspectives of proteomics in crop science fields (작물학 분야 프로테오믹스의 응용과 전망)

  • Woo Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2004.04a
    • /
    • pp.12-27
    • /
    • 2004
  • Thanks to spectacular advances in the techniques for identifying proteins separated by two-dimensional electrophoresis and in methods for large-scale analysis of proteome variations, proteomics is becoming an essential methodology in various fields of plant sciences. Plant proteomics would be most useful when combined with other functional genomics tools and approaches. A combination of microarray and proteomics analysis will indicate whether gene regulation is controlled at the level of transcription or translation and protein accumulation. In this review, we described the catalogues of the rice proteome which were constructed in our program, and functional characterization of some of these proteins was discussed. Mass-spectrometry is a most prevalent technique to identify rapidly a large of proteins in proteome analysis. However, the conventional Western blotting/sequencing technique us still used in many laboratories. As a first step to efficiently construct protein data-file in proteome analysis of major cereals, we have analyzed the N-terminal sequences of 100 rice embryo proteins and 70 wheat spike proteins separated by two-dimensional electrophoresis. Edman degradation revealed the N-terminal peptide sequences of only 31 rice proteins and 47 wheat proteins, suggesting that the rest of separated protein spots are N-terminally blocked. To efficiently determine the internal sequence of blocked proteins, we have developed a modified Cleveland peptide mapping method. Using this above method, the internal sequences of all blocked rice proteins (i. e., 69 proteins) were determined. Among these 100 rice proteins, thirty were proteins for which homologous sequence in the rice genome database could be identified. However, the rest of the proteins lacked homologous proteins. This appears to be consistent with the fact that about 30% of total rice cDNA have been deposited in the database. Also, the major proteins involved in the growth and development of rice can be identified using the proteome approach. Some of these proteins, including a calcium-binding protein that fumed out to be calreticulin, gibberellin-binding protein, which is ribulose-1,5-bisphosphate carboxylase/oxygenase activate in rice, and leginsulin-binding protein in soybean have functions in the signal transduction pathway. Proteomics is well suited not only to determine interaction between pairs of proteins, but also to identify multisubunit complexes. Currently, a protein-protein interaction database for plant proteins (http://genome .c .kanazawa-u.ac.jp/Y2H)could be a very useful tool for the plant research community. Recently, we are separated proteins from grain filling and seed maturation in rice to perform ESI-Q-TOF/MS and MALDI-TOF/MS. This experiment shows a possibility to easily and rapidly identify a number of 2-DE separated proteins of rice by ESI-Q-TOF/MS and MALDI-TOF/MS. Therefore, the Information thus obtained from the plant proteome would be helpful in predicting the function of the unknown proteins and would be useful in the plant molecular breeding. Also, information from our study could provide a venue to plant breeder and molecular biologist to design their research strategies precisely.

  • PDF