• 제목/요약/키워드: microalga

검색결과 138건 처리시간 0.02초

신규 미세조류 Tetraselmis sp. KCTC12236BP의 분리 및 이를 이용한 바이오디젤 제조 (Isolation of New Microalga, Tetraselmis sp. KCTC12236BP, and Biodiesel Production using Its Biomass)

  • 신동우;배재한;조용희;류영진;김지훈;임상민;이철균
    • 한국해양바이오학회지
    • /
    • 제8권1호
    • /
    • pp.39-44
    • /
    • 2016
  • The microalgae have been studied for a source of biodiesel production. It is important to select the microalgae, which grows rapidly in local environmental conditions such as temperature range and ingredient of local seawater. The aim of this study was isolating microalga, which has rapid growth rate and high FAME contents in wide temperature ranges, for microalgal offshore cultivation in Korea, one of the country with four distinct seasons. Firstly, we had isolated a green microalga, Tetraselmis sp. KCTC12236BP, which has faster growth rate in low temperature (5 and $10^{\circ}C$) than Tetraselmis suecica and Dunaliella tertiolecta LB999 from Young Heung Island, Incheon, Korea. This microalga was cultivated in outdoor circulated tank photobioreactor (CT-PBR). As a result, this microalga could grow in wide temperature ranges (6 to $29^{\circ}C$), outdoors. After that, the biomass was recovered, and 13.2 g biodiesel could be acquired from 110 g dry biomass. These results indicate that the isolated microalga, Tetraselmis sp. KCTC12236BP is proper to biodiesel production using outdoor cultivation in Korea for all seasons.

Anaerobic digestate as a nutrient medium for the growth of the green microalga Neochloris oleoabundans

  • Abu Hajar, Husam A.;Guy Riefler, R.;Stuart, Ben J.
    • Environmental Engineering Research
    • /
    • 제21권3호
    • /
    • pp.265-275
    • /
    • 2016
  • In this study, the microalga Neochloris oleoabundans was cultivated in a sustainable manner using diluted anaerobic digestate to produce biomass as a potential biofuel feedstock. Prior to microalgae cultivation, the anaerobic digestate was characterized and several pretreatment methods including hydrogen peroxide treatment, filtration, and supernatant extraction were investigated and their impact on the removal of suspended solids as well as other organic and inorganic matter was evaluated. It was found that the supernatant extraction was the most convenient pretreatment method and was used afterwards to prepare the nutrient media for microalgae cultivation. A bench-scale experiment was conducted using multiple dilutions of the supernatant and filtered anaerobic digestate in 16 mm round glass vials. The results indicated that the highest growth of the microalga N. oleoabundans was achieved with a total nitrogen concentration of 100 mg N/L in the 2.29% diluted supernatant in comparison to the filtered digestate and other dilutions.

파블로바 비리디스로부터 분리한 세균에 의한 미세조류의 생장 촉진 (Growth Promotion of Pavlova viridis by Bacteria Isolated from the Microalga)

  • 사커 아노와룰 아하메드;김진주;최태오;최태진
    • 생명과학회지
    • /
    • 제25권5호
    • /
    • pp.568-576
    • /
    • 2015
  • 해양 미세조류인 파블로바 비리디스는 빨리 자라며, DHA, EPA와 같은 해양생물을 키우는데 필수적인 영양요소를 축적하는 능력을 가지고 있어 어류와 새우류 치어 사육에 이용되어 왔다. 본 연구에서는 파블로바 비리디스와이 미세조류의 표면에 붙어서는 세균과의 공생적 상호작용을 연구하였다. 무균의 파블로바 비리디스 균주는 항생제 혼합액을 포함하는 액체배지에 반복 배양함으로써 얻어졌다. 무균상태는 항생제를 포함하지 않는 배지에 3번 계대배양한 후 확인하였다. 무균상태의 조류는 이 조류로부터 분리되었으며, 임의로 I1–I5로 명명한 세균과 혼합배양하면서 조류의 성장 촉진 효과를 조사하였다. 모든 세균이 파블로바 비리디스의 생장을 촉진하였으며, 그 중 I3로 명명한 세균이 5가지 세균 중 가장 효과가 좋았다. 혼합배양 상태에서 파블로바 비리디스의 세포 수는 대조구에 비하여 유의하게 많았다. I3의 16S rRNA 유전자에 대한 염기서열 분석 결과 시트로박터 종의 그것과 97%의 염기서열 상동성을 보였다. I3을 파블로바 비리디스와 혼합배양할 경우 I3의 성장도 유의하게 증가하였으며, 이것은 조류와 그 표면에 부착하여 살아가는 세균들 사이에 공생관계가 존재한다는 것을 제시한다. 미세조류와 세균과의 공생관계는 전자현미경적 관찰을 이용하여 확인하였다.

First record of a marine microalgal species, Micractinium singularis (Trebouxiophyceae) isolated from Janghang Harbor, Korea

  • Jo, Seung-Woo;Kang, Nam Seon;Chae, Hyunsik;Lee, Jung A;Kim, Kyeong Mi;Yoon, Moongeun;Hong, Ji Won;Yoon, Ho-Sung
    • 환경생물
    • /
    • 제38권1호
    • /
    • pp.61-70
    • /
    • 2020
  • A eukaryotic microalga was isolated from seawater in Janghang Harbor, Korea and its morphological, molecular, and physiological characteristics were investigated. Due to its simple morphology, no distinctive characters were found by morphological observation, such as light microscope or scanning/transmission electron microscopy (S/TEM). However, molecular phylogenetic evidence inferred from the concatenated small subunit (SSU) 18S rRNA and internal transcribed spacer (ITS) sequence data indicated that the isolate belonged to the newly described Micractinium singularis. Furthermore, it was clustered with Antarctic Micractinium strains and it also showed a psychrotolerant property, surviving at temperatures as low as 5℃. However, its optimal growth temperatures range from 15℃ to 25℃, indicating that this microalga is a mesophile. Additionally, gas chromatography-mass spectrometry (GC/MS) analysis showed that the isolate was rich in nutritionally important omega-3 polyunsaturated fatty acid, and high-performance liquid chromatography analysis (HPLC) revealed that the high-value antioxidant lutein was biosynthesized as an accessory pigment by this microalga, with glucose as the major monosaccharide. Therefore, in this study, a Korean marine M. singularis species was discovered, characterized, and described. It was subsequently added to the national culture collections.

Characterization of the Growth, Total Lipid and Fatty Acid Profiles in Microalga, Nannochloropsis oceanica under Different Nitrogen Sources

  • Mahdieh, Majid;Shabani, Salimeh;Amirjani, Mohammad Reza
    • 한국미생물·생명공학회지
    • /
    • 제47권1호
    • /
    • pp.11-19
    • /
    • 2019
  • The properties of microalgae as bioresources for biodiesel production can be improved by adding nitrogen sources into the culture medium. Thus, Nannochloropsis oceanica CCAP 849/10 was cultured in f/2 media supplemented with five different forms of nitrogen at $0.88mmol-N\;l^{-1}$ each: ammonium bicarbonate ($NH_4HCO_3$), ammonium sulfate ($(NH_4)_2SO_4$), sodium nitrate ($NaNO_3$), ammonium nitrate ($NH_4NO_3$), and urea. The cell density, lipid content, and fatty acid profile of the microalga were determined after 15 days of cultivation. The growth of N. oceanica based on cell number was lowest in the medium with $NH_4NO_3$, and increased significantly in the medium with $NH_4HCO_3$. Cells treated with $(NH_4)_2SO_4$, and $NH_4NO_3$ produced the highest total lipid contents (i.e., 65% and 62% by dry weight, respectively). The fatty acid profiles of the microalga were significantly different in the various nitrogen sources. The major fatty acids detected in cultures supplemented with $NH_4HCO_3$, $(NH_4)_2SO_4$, $NH_4NO_3$, or urea were C14:0, C16:0, C16:1, C18:0, C18:1, C18:2, C20:5, and C22:6. However, the C16:1 content in the $NaNO_3$-supplemented culture was very low. This study highlights that the nitrogen source can strongly influence lipid production in N. oceanica and its fatty acid composition.

Isolation and description of a Korean microalga, Asterarcys quadricellulare KNUA020, and analysis of its biotechnological potential

  • Hong, Ji-Won;Kim, Sun-Ae;Chang, Ji-Won;Yi, Jung;Jeong, Ji-Eun;Kim, Sung-Hwan;Kim, Sung-Hong;Yoon, Ho-Sung
    • ALGAE
    • /
    • 제27권3호
    • /
    • pp.197-203
    • /
    • 2012
  • A eukaryotic microalga, Asterarcys quadricellulare KNUA020, was isolated from garden soil at Kyungpook National University in Daegu, South Korea and its biotechnological potential was assessed. Optimal growth was obtained when the culture was incubated at $25^{\circ}C$ and around pH 7.0. The total lipid content of the isolate was 15.5% of dry weight and its most abundant fatty acid was nutritionally important C18:3 ${\omega}3$ (${\alpha}$-linolenic acid, ALA). In addition, a high-value fatty alcohol, hexadecenol ($C_{20}H_{40}O$), was also identified in this photosynthetic microorganism. Hence, A. quadricellulare KNUA020 appears to be promising for use in the production of microalgae-based biochemicals.

Effect of Copper on Marine Microalga Tetraselmis suecica and its Influence on Intra- and Extracellular Iron and Zinc Content

  • Kumar, K. Suresh;Shin, Kyung-Hoon
    • 생태와환경
    • /
    • 제50권1호
    • /
    • pp.16-28
    • /
    • 2017
  • In an aquatic environment, toxicity of metals to organisms depends on external factors (type of metal, exposure concentration and duration, environmental parameters, and water quality) and intracellular processes(metal-binding sites and detoxification). Toxicity of copper(Cu) on the marine microalga Tetraselmis suecica was investigated in this study. Dose-dependent (Cu concentration dependent) inhibition of growth and cell division, as well as, variation of intra- and extra-cellular Cu, Fe and Zn content was observed. T. suecica was sensitive to Cu; the 96 h $EC_{50}$ (concentration to inhibit growth-rate by 50%) of growth rate (${\mu}$) ($21.73{\mu}M\;L^{-1}$), cell division $day^{-1}$ ($18.39{\mu}M\;L^{-1}$), and cells $mL^{-1}$ ($13.25{\mu}M\;L^{-1}$) demonstrate the toxicity of Cu on this microalga. High intra-($19.86Pg\;cell^{-1}$) and extra-cellular($54.73Pg\;cell^{-1}$) Cu concentrations were recorded, on exposure to 24.3 and $72.9{\mu}M\;L^{-1}$ of Cu.

Isolation of a Korean Domestic Microalga, Chlamydomonas reinhardtii KNUA021, and Analysis of Its Biotechnological Potential

  • Hong, Ji Won;Jeong, Jieun;Kim, Sung Hong;Kim, Sunghwan;Yoon, Ho-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권3호
    • /
    • pp.375-381
    • /
    • 2013
  • A freshwater microalga, Chlamydomonas reinhardtii KNUA021, was characterized for its potential as a biochemical feedstock. Its optimal growth was observed when the culture was incubated at $25^{\circ}C$ and pH 9.4. However, the isolate was capable of survival and growth under a variety of temperatures (10-$30^{\circ}C$) and pH (pH 4.0-12.0) conditions. The total lipid content of the isolate was 21.7% of dry weight and it was found that a high-value fatty alcohol, hexadecenol ($C_{20}H_{40}O$), was autotrophically produced by strain KNUA021. In addition, a nutritionally important $C_{18:3}{\omega}3$ (${\alpha}$-linolenic acid, ALA) was also identified in this photosynthetic microorganism as one of the major fatty acids. Hence, C. reinhardtii KNUA021 appears to show promise for use in the production of microalgae-based biochemicals.

Morphological, Molecular, and Biochemical Characterization of Astaxanthin-Producing Green Microalga Haematococcus sp. KORDI03 (Haematococcaceae, Chlorophyta) Isolated from Korea

  • Kim, Ji Hyung;Affan, Abu;Jang, Jiyi;Kang, Mee-Hye;Ko, Ah-Ra;Jeon, Seon-Mi;Oh, Chulhong;Heo, Soo-Jin;Lee, Youn-Ho;Ju, Se-Jong;Kang, Do-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권2호
    • /
    • pp.238-246
    • /
    • 2015
  • A unicellular red microalga was isolated from environmental freshwater in Korea, and its morphological, molecular, and biochemical properties were characterized. Morphological analysis revealed that the isolate was a unicellular biflagellated green microalga that formed a non-motile, thick-walled palmelloid or red aplanospore. To determine the taxonomical position of the isolate, its 18S rRNA and rbcL genes were sequenced and phylogenetic analysis was performed. We found that the isolate was clustered together with other related Haematococcus strains showing differences in the rbcL gene. Therefore, the isolated microalga was classified into the genus Haematococcus, and finally designated Haematococcus sp. KORDI03. The microalga could be cultivated in various culture media under a broad range of pH and temperature conditions. Compositions of the microalgal cellular components were analyzed, and its protein, carbohydrate, and lipid compositions were estimated to be 21.1 ± 0.2%, 48.8 ± 1.8%, and 22.2 ± 0.9%, respectively. In addition, D-glucose and D-mannose were the dominant monosaccharides in the isolate, and its amino acids were composed mainly of aspartic acid, glutamic acid, alanine, and leucine. Moreover, several polyunsaturated fatty acids accounted for about 80% of the total fatty acids in Haematococcus sp. KORDI03, and the astaxanthin content in the red aplanospores was estimated to be 1.8% of the dry cell weight. To the best of our knowledge, this is the first report of an Haematococcus sp. isolated from Korea, which may be used for bioresource production in the microalgal industry.