• Title/Summary/Keyword: micro-powder

Search Result 473, Processing Time 0.033 seconds

Fabrication of Tungsten Powder Mixtures with Nano and Micro Size by Reduction of Tungsten Oxides (텅스텐 산화물의 환원을 이용한 나노/마이크로 크기 텅스텐 혼합분말 제조)

  • Kwon, Na-Yeon;Jeong, Young-Keun;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.27 no.10
    • /
    • pp.513-517
    • /
    • 2017
  • An optimum route to fabricate a hybrid-structured W powder composed of nano and micro size powders was investigated. The mixture of nano and micro W powders was prepared by a ball milling and hydrogen reduction process for $WO_3$ and W powders. Microstructural observation for the ball-milled powder mixtures revealed that the nano-sized $WO_3$ particles were homogeneously distributed on the surface of large W powders. The reduction behavior of $WO_3$ powder was analyzed by a temperature programmed reduction method with different heating rates in Ar-10% $H_2$ atmosphere. The activation energies for the reduction of $WO_3$, estimated by the slope of the Kissinger plot from the amount of reaction peak shift with heating rates, were measured as 117.4 kJ/mol and 94.6 kJ/mol depending on reduction steps from $WO_3$ to $WO_2$ and from $WO_2$ to W, respectively. SEM and XRD analysis for the hydrogen-reduced powder mixture showed that the nano-sized W particles were well distributed on the surface of the micro-sized W powders.

Development of Micro-stereolithography Technology using Metal Powder (금속 분말을 이용한 마이크로 광 조형 기술의 개발)

  • Lee J.W.;Lee I.H.;Cho D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1155-1158
    • /
    • 2005
  • Micro-stereolithography is a newly proposed technology as a means that can fabricate a 3D micro structure of free form. It makes a 3D micro-structure by dividing the shape into many slices of relevant thickness along horizontal surfaces, hardening each layer of slice with a focused laser beam, and stacking them up to a desired shape. However, we do not anticipate the electric conductivity of the final product at the existing micro-stereolithography. The reason is that this technology uses polymer to make the product. Thus the new suspension which was mixed conventional photopolymer with metal powder was developed in this study. The developed suspensions were based on SL5180 which is commercialized resin and IMS03 that is made in our laboratory. And Triton X-100 was added at the suspension for getting the scattering effect and stabilizing effect. The layer recoating device was developed to be flat the mixed high viscosity suspension. A 3D micro structure was manufactured by using recoating system and micro-stereolithography system. The fabricated product was sintered to get the electric conductivity. After sintering, a pure copper product was made. In this study, new process was developed by making metal micro structure having an electric conductivity. This technology broadened the realm of the micro-stereolithography technology. And it will be applied to make the 3D micro structure of free form which has a high hardness and an electric conductivity in the near future.

  • PDF

Manufacturing technology of micro parts by powder injection molding (PIM기술을 이용한 마이크로 부품 성형기술)

  • Lee, W.S.;Ko, S.H.;Jang, J.M.;Kim, I.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.60-63
    • /
    • 2009
  • Manufacturing technologies of micro spur gear and micro mold by micro PIM were studied with stainless steel feedstock. For molding of gears, micro mold with gear cavity of 1.2 mm in diameter was produced by wire EDM. The proper injection pressure was selected to 70bar by observation and measuring of shapes and shrinkage of gears before/after sintering. For fabrication of micro mold, a tiny polymer gear was produced by injection into the mold. Then, 316L feedstock was again injected/compressed on the polymer gear and debinded together with polymer gear followed by sintering. As a result, another metal mold with gear cavity reduced to about 20% was fabricated and through repetition of this process chain, micro gear mold with cavity about below 800 um was finally obtained. In reduction of size by injection/compression molding, height of gear tooth was shrunk more and the effort for decrease of roughness of micro cavity were carried out ultrasonic polishing and as a result, the roughness in cavity decreased from 3-4 um to about 200 nm.

  • PDF

New Material and Processing Issues for High Quality Parts by Micro-MIM

  • Rota, A.;Imgrund, Ph.;Haack, J.;Petzoldt, F.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.34-35
    • /
    • 2006
  • The development of Micro MIM as a new manufacturing process for metallic micro parts made of advanced functional materials has been the subject of considerable research over the last years. This paper addresses important quality aspects on processing of new materials by Micro-MIM. Three examples of new functional materials that can be processed are reviewed in this paper. The first example is two-component-Micro-MIM to obtain multi-functional devices. A micro positioning encoder consisting of a magnetic / non-magnetic material combination is presented. The second issue is series production of the replicate of the smallest human bone in the ear (stapes) from Titanium as an example of medical application. Quality assurance and reproducibility in terms of injection moulding parameters are addressed. In the third part, first results on the processing of the shape memory alloy NiTi by Micro-MIM are presented. Potential applications include biocompatible devices and transportation, for example automotive and aerospace. Processing routes and initial microstructures obtained are discussed.

  • PDF

Fabrication of micro lens array using micro-compression molding (미세압축성형을 통한 플라스틱 미세렌즈의 성형)

  • Moon, Su-Dong;Kang, Shin-Il;Yee, Young-Joo;Bu, Jong-Uk
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.743-746
    • /
    • 2000
  • Plastic microlenses play an important role in reducing the size, weight, and the cost of the systems in the fields of optical data storage and optical communication. In the present study, plastic microlens arrays were fabricated using micro-compression molding process. The design and fabrication procedures for mold insert were simplified by using silicon instead of metal. A simple but effective micro compression molding process, which uses polymer powder, were developed for microlens fabrication. The governing process parameters were temperature and pressure histories and the micromolding process was controlled such that the various defects developing during molding process were minimized. The radius and magnification ratio of the fabricated microlens were $125{\mu}m$ and over 3.0, respectively.

  • PDF

Fabrication of Micro Lens Array Using Micro-Compression Molding (미세압축성형을 통한 플라스틱 미세렌즈의 성형)

  • Gang, Sin-Il;Mun, Su-Dong;Lee, Yeong-Ju;Bu, Jong-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1242-1245
    • /
    • 2001
  • Plastic microlenses play an important role in reducing the size, weight, and the cost of the systems in the fields of optical data storage and optical communication. In the present study, plastic microlens arrays were fabricated using micro-compression molding process. The design and fabrication procedures for mold insert were simplified by using silicon instead of metal. A simple but effective micro compression molding process, which uses polymer powder, were developed for microlens fabrication. The governing process parameters were temperature and pressure histories and the micromolding process was controlled such that the various defects developing during molding process were minimized. The radius and magnification ratio of the fabricated microlens were 125$\mu\textrm{m}$ and over 3.0, respectively.

Fabrication of Micro Spur Gear in Nano Grained Al Alloy

  • Lee, Won-Sik;Jang, Jin-Man;Ko, Se-Hyun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.778-779
    • /
    • 2006
  • Manufacturing technologies of micro parts were studied in nano grained Al-1.5mass%Mg alloy. During compressive test at $300^{\circ}C$, the Al alloy showed stain softening phenomenon by grain boundary sliding regardless of strain rate. Micro spur gear with ten teeth (height of $200{\mu}m$ and pitch of $250{\mu}m$) was fabricated with sound shape by micro forging. During micro forging, increase of applied stress induced by friction between material and die surface was effectively compensated by decrease of stress by strain softening behavior and as a result, flow stress increased only about 50 MPa more than that in compressive test

  • PDF

Role of Development of Submicro-grained Hardmetal in NEDO National Project "High Precision Micro-components"

  • Hayashi, Koji
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.340-341
    • /
    • 2006
  • High functional micro devices are demanded in a variety of fields. For realising such demands, development of high-precision micro-components installed in the devices are needed. To achieve high-precision in the mold processing of micro-components, the development of mold materials, i.e., the development of WC-Co hardmetal with higher hardness and fracture strength is essential, together with the developments of processing technology of high precision mold and mold-forming technology of high precision micro-components, etc. The role of development of the finer submicro-grained hardmetal in a NEDO national project aiming the integrated development of these all technologies and some results are mainly explained.

  • PDF

Powder extrusion with superplastic Al-78Zn powders for micro spur gears (초소형 스퍼기어 제조를 위한 초소성 Al-78Zn 분말 압출)

  • Lee, K.H.;Kim, J.W.;Hwang, D.W.;Kim, J.H.;Chang, S.S.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.387-390
    • /
    • 2009
  • This study was designed to fabricate the micro-electro-mechanical systems (MEMS) parts such as micro spur gears using hot extrusion of gas atomized Al-78Zn powders. For this purpose, it is important to develop new methods to fabricate micro-dies and choose suitable extrusion conditions for a micro-forming. Micro-dies with Ni were fabricated by LIGA technology. LIGA technology was capable to produce micro-extrusion dies with close tolerances, thick bearing length and adequate surface quality. Superplastic Al-78Zn powders have the great advantage in achieving deformation under low stresses and exhibiting good micro formability with average strain rates ranging from $10^{-3}$ to $10^{-2}\;s^{-1}$ and constant temperatures ranging from 503 to 563K. Al-78Zn powders were compacted into a cylindrical shape (${\Phi}3{\times}h10$) under compressive force of 10kN and, subsequently, the compacted powders were extruded at 563k in a hot furnace. Micro-extrusion has succeeded in forming micro-gear shafts.

  • PDF