• Title/Summary/Keyword: micro-plastics

Search Result 45, Processing Time 0.027 seconds

Mirror Surface Grinding Characteristics and Mechanism of Carbon Fiber Reinforced Plastics (탄소섬유강화 플라스틱의 경면연삭가공 특성)

  • 박규열;이대길;중천위웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2514-2522
    • /
    • 1994
  • The mirror surface grinding of carbon fiber reinforced plastics(CFRP) was realized by using the metal bonded super-abrasive micro grain wheel with electrolytic in-process dressing(ELID). The maximum surface roughness $R_{max}$ of CFRP which was obtained with #6,000 wheel, was 0.65 $\mu{m}$, which was rougher surface finish compared to those of hard and brittle materials with the same mesh number wheel with ELID. The grinding performance was much dependent on the grinding direction and the best surface roughness was obtained at $90^{\circ}C$ grinding with fiber direction. The spark-out effect on the surface improvement was significant when smaller mesh number grinding wheels were used. From the surface observations of CFRP with scanning electron microscope(SEM) and Auger electron spectroscopy(AES), it was found that the mirror surface grinding of CFRP was generated by the homogenization due to carbonization of the ground surface and smearing of chips composed of the carbon fiber and carbonized epoxy resin into the ground surface.

Laser-Induced Fluorescence Characterization for Real-Time Microplastic Counting (실시간 미세플라스틱 카운팅을 위한 레이저 유도 형광 특성 분석)

  • Ko, Seunghyeon;Oh, Geum-Yoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.149-154
    • /
    • 2022
  • In this paper, laser-induced fluorescence properties of four plastics were characterized through spectrometer analysis for real-time microplastic counting. Recently, environmental problems related to microplastics have emerged. In order to detect microplastics, analysis methods such as FT-IR and Raman are used. However, they have the disadvantages of being time-consuming and requiring a pretreatment process. In most plastic products on the market, 10% to 30% of plasticizers and reinforcing agents are added. Therefore, most microplastics present in seawater and freshwater emit fluorescence signals by 270 nm UV light source regardless of their type due to their molecular structure due to additives. Real-time microplastics counting is possible more easily by using the proposed laser-induced fluorescence detection method because of the fluorescence expression characteristic of 340 nm that appears due to the plasticizer of plastics.

A study on the bending strength characteristics of steel bar and GFRP rebar in salt water surroundings (해수 환경에서의 철근과 GFRP 리바의 굽힘 강도 특성에 관한 연구)

  • Han, Gil-Young;Lee, Dong-Gi;Kwak, Sang-Muk;Bae, Si-Yon;Kim, Ki-Sung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.354-358
    • /
    • 2002
  • This paper describes the need for a ductile Fiber Reinforced Plastics (FRP) reinforcement for concrete structures. To promte the degradation of the adhesive condition at the fiber/matrix micro interface without matrix dissolution loss were carried out in salt water surrounding. The absorption properties and the bending strength were compared about GFRP rebar and steel bar.

  • PDF

A study on the effect of twice foaming process on microcellular foamed plastics (재발포가 MCPs에 미치는 영향)

  • Park J.Y.;Cha S.W.;Seo J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.421-422
    • /
    • 2006
  • According to the industrialization the using of polymers is increased by their mechanical or commercial demands. At now, the using of polymers is become bigger and bigger than yet. On the other words, our whole life is covered by the polymers. Due to the extended polymer using, the material cost is higher and higher. Therefore, the people used the polymer foaming process using the gas. The polymer foaming using the pentane or butane gas is prohibited by the government cause of the explosiveness and non-environmental friendly. Therefore, the members of MIT invented the Micro-cellular Polymer Foaming in 1980. The Micro-cellular Polymers has many cells in the polymer matrix. By compare between non-foamed polymers, the Micro-cellular Polymers have low material cost, soundproof and shock less. The purpose of this study is to study the twice foamed polymer by batch process. To know the reaction by step of microcellular foaming process, we measure the density of polymer. And to viewing the cell morphology, we used the scanning electron microscopy(SEM).

  • PDF

Formation of cell under $1\mu{m}$ by quenching (Quenching을 이용한 $1\mu{m}$ 미만의 Cell 형성)

  • Lee B.H.;Cha S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1420-1423
    • /
    • 2005
  • Micro Cellular Plastics create a sensation at polymer industrial for lowering product cost & overcoming a lowering of mechanical intensity. Reduction of MCPs cell size increases the intensity of MCPs. This research based on the experiment about cell size reduction method. At this study, Quenching & Pressure foaming process are introduced to one of methods. Conclusion of study is that Quenching process is the simplest process for nano cell formation.

  • PDF

MCPs의 셀 크기에 따른 진동감쇠특성 연구

  • 이병희;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.100-100
    • /
    • 2004
  • 미국에서 발명된 초미세 발포기술은 기존의 발포공법과는 달리, 가스(CO2, N2)에 의해 재료에 생성된 기포(셀)의 크기가 loom이하인 작은 셀이 재료 내에 고르게 분포되도록 하여, 기존의 발포재료보다 나은 기계적 특성을 유지하도록 하였다. 그 결과, 제품의 재료비를 절감하기 위해 연구된 MCPs는 기존의 발포기술과는 달리 재료의 기계적 강도 저하를 극복하고 충격 강도와 인성의 향상을 가져왔다. 그리하여, 현재 국내의 자동차업체의 범 퍼 및 내장재로의 사용을_시작으로 산업의 다각적인 분야에 이용되고 있다.(중략)

  • PDF

Current Status of Plastic Recycling in Korea (국내 플라스틱 리싸이클링 현황)

  • Lee, Sang-hun
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.3-8
    • /
    • 2019
  • Recently, plastic waste in Korea has been recognized as a critical issue due to an increase in massive production of plastics, difficulty in disposal of waste plastics, and public recognition of toxicity in micro-plastics, etc. To resolve those problems, the regulation to reduce plastics consumption may be primarily considered but, in this case, clarification should be made on the rationales and the action plans in the regulation for individual waste plastic items. Another problem is the small capital sizes of domestic recycling companies, which leads to poor R&D capacity, low recycling yields and thus lowering values of recycling items. This adversely affects consumers' perception. The R&D toward recycling technical progress should take into account the environmental friendliness and recyclability from the early product design stages. Certainly, this should be supported in governmental policy and public action plans. In addition, by referring to advanced policies of i.e. European Union, the recycling industry should be recognized as an opportunity toward new investment & employment. If necessary, the regulation of plastic consumption through a formal evaluation process such as Life Cycle Assessment (LCA) will also be helpful. The values of recycled plastics should be improved through the identification and elimination of harmful chemical substances potentially contained in the products.

A Study on Laser Welding for 3D Printed Metal Plate and Polymer (금속 3D 프린팅 소재와 폴리머 레이저접합에 관한 연구)

  • Ye, Kang-Hyun;Kim, Sung-Wook;Park, Geo-Dong;Choi, Hae-Woon
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.23-27
    • /
    • 2016
  • A 3D printed metal part and thermal plastic polymer part were joined by direct laser irradiation. The 3D metal part was fabricated by using DED(Direct Energy Deposition) with STS316 material. The experiment was carried out through no patterned metal surface, 3D metal printed surface and micro laser patterned surface. The most secure joining quality was obtained at the laser micro patterned surface specimen and the counterparts of polymers were PLA and PE based thermo plastics. The applied laser power was 350Watt and the distance of patterns was maintained at $150{\mu}m$. The laser line width was optimized at $450{\mu}m$ and the laser micro pattern depth was $180{\mu}m$ for the best joining quality. Based on the result analysis, the possibility of laser material joining for metal to polymer was proposed and multi-material joining will be possible in 3D laser direct material fabrication.

FDM 3D Printing of Environmental Friendly and High Strength Bio-based PC Filaments for Baby Toys

  • Park, Seong Je;Lee, Ji Eun;Park, Jean Ho;Lyu, Min-Young;Park, Keun;Koo, Myung Sool;Jin, Sun Chul;Kim, Ki Yong;Son, Yong
    • Elastomers and Composites
    • /
    • v.52 no.2
    • /
    • pp.99-104
    • /
    • 2017
  • Due to the depletion of fossil oil and the increasing oil price, bio-plastic is currently topical. Bio-based plastics are synthesized from plant resources, unlike conventional petroleum-based counterparts. Therefore, the former minimizes global warming and reduces carbon dioxide emission. Fossil polycarbonate (PC)has good mechanical and optical properties, but its synthesis requires bisphenol-A and phosgene gas, which are toxic to humans. To address these problems, the fused deposition 3D printing process (hereafter, FDM) is studied using environmentally-friendly and high-strength bio-based PC. A comparisonof the environmental impact and tensile strength of fossil PC versus bio-based PC is presented herein, demonstrating that bio-based PC is more environmentally-friendly with higher tensile strength than fossil PC. The advantages of bio-based PC are applied in the FDM process for the fabrication of environmentally-friendly baby toys.

Combustion Characteristics of Wood Materials (1) (Mass Reduction and Ignition Delay) (목재의 연소특성(1) (질량감소와 착화지연))

  • Kim, Chun-Jung
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.11-22
    • /
    • 1999
  • Combustion characteristics of the wood chips(balsa chips) were experimentally investigated with respect to the thermal recycle system of the urban waste. The urban waste contains plastics, vegetable and wood materials. Wood was chosen as an example of the one of the component of urban dust. A small wood chip was burned in a electric furnace by the micro-electric balance. The mass reduction rate was normalized by the initial mass of test piece and the time of volatile combustion end. When the mass of the wood chips(balsa chips) was larger than 0.5g, the combustion similarity was found on the normalized mass reduction rate.

  • PDF