• 제목/요약/키워드: micro-patterning

검색결과 250건 처리시간 0.028초

Nd:YAG Laser를 이용한 자성금속막의 패턴 식각에 있어서 에너지 흡수층이 미치는 영향 (The Effect of Energy-absorbing layers on Micro-patterning of Magnetic Metal Films using Nd:YAG Laser)

  • 이주현;채상훈;서영준;송재성;민복기;안승준
    • 한국전기전자재료학회논문지
    • /
    • 제13권6호
    • /
    • pp.538-544
    • /
    • 2000
  • The laser patterning of sputter-deposited CoNdZr/Cu/CoNbZr multi-layered films had been tried using Nd:YAG laser. However generally it is very difficult to remove metal films because of their high reflectance of the laser on the surfaces. As a counterproposal for this problem authors for the first time tried to deposit energy-absorbing layers on the metal films and then irradiated the laser on the surfaces of energy-absorbing layers. Here the energy-absorbing layers consisted of laser energy-absorbing fine powders and binding polymers. Three kinds of powders for the energy-absorbing layers had been used to see the difference in the pattern formation with the degree of laser energy absorption. They were electrically conductive silver powders insulating BaTiO$_3$powder and semiconducting carbon powder. Remarkable difference in width of the formed pattern and the roughness of pattern edge were observed with the characteristic of the powder for the energy-absorbing layer. The pattern width using carbon paste was about three times larger than that using BaTiO$_3$paste. It was observed that the energy-absorbing layer with carbon was the most effective on this micro-patterning.

  • PDF

Polyelectrolyte Micropatterning Using Agarose Plane Stamp and a Substrate Having Microscale Features on Its Surface

  • Lee, Min-Jung;Lee, Nae-Yoon;Lee, Sang-Kil;Park, Sung-Su;Kim, Youn-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권10호
    • /
    • pp.1539-1542
    • /
    • 2005
  • We have introduced polyelectrolyte micro-patterning technique employing agarose plane stamp and a hard substrate having microscale features on its surface. With this method, chemically micropatterned surfaces with both positive and negative functionalities were successfully embedded in well-defined microstructures, and selective impartment of charge functionalities was confirmed by patterning bead bearing surface charge. Furthermore, this technique allows highly sensitive immobilization of protein onto targeted surface simply by endowing functionalities, which extends the potential of its use as a tool for high-throughput protein microarray and proteomics. Because plane agarose stamp is free of structures on its surface, there is no concern for pattern collapse, and the combination of agarose plane stamp with patterned substrate is more suited for selective protein patterning compared with adopting surface-patterned agarose stamp with flat substrate. Our technique using agarose plane stamp and a substrate having microscale features on its surface suggests a range of possible applications, including the micropatterning of biofunctionalized copolymer having polyelectrolyte block, immobilization of micro- and nanoparticle with biofunctionalities such as biotin and streptavidine, and establishing optoelectronic microstructures with micro-beads on various surfaces.

마이크로컨택 프린팅을 이용한 나노와이어 패터닝 기술 개발 (Development of Nanowire Patterning Process Using Microcontact Printing)

  • 조성진
    • 한국전기전자재료학회논문지
    • /
    • 제29권9호
    • /
    • pp.571-575
    • /
    • 2016
  • Recently, there has been much focus on the controlled alignment and patterning process of nanowires for nanoelectronic devices. A simple and effective method for patterning of highly aligned nanowires using a microcontact printing technique is demonstrated. In this method, nanowires are first directionally aligned by contact printing, following which line and space micropatterns of nanowire arrays are accomplished by microcontact printing with a micro patterned NOA mold.

미세전극 패터닝 기술을 이용한 바이오센서 패턴 구현 (Implementation of Biosensor Pattern Using Micro Patterning Technique)

  • 고정범;김형찬;양영진;김현범;양성욱;오승호;도양회;최경현
    • 한국기계가공학회지
    • /
    • 제15권6호
    • /
    • pp.122-128
    • /
    • 2016
  • The Biosensor biosensor pattern was developed by via an EHD (electro-hydro-dynamics (EHD) patterning process that was performed under atmospheric pressure at room temperature in a single step. The drop diameter was smaller than nozzle diameter and applied high viscosity conductive ink was applied in the EHD patterning method to provide a clear advantage over the piezo and thermal inkjet printing techniques. The Biosensor's biosensor's micro electrode pattern was printed by via a continuous EHD patterning method using 3three- type types of control parameters parameter (input voltage, patterning speed, nozzle pressure). High viscosity (1000 cps) conductive ink with 75 wt% of silver nanoparticles was used for experimentation. The incremental result of impedance of biosensor impedance was measured between the antibody ($10ug{\mu}g/ml$) to spore (0.1 ng/ml, 10 ng/ml, and $1ug{\mu}g./ml$) reaction at frequency 493 MHz frequency.

마이크로패터닝을 부여한 임플란트 주변골에서의 하중 분포에 관한 유한요소분석법적 연구 (Finite Element Analysis of Stress Distribution around the Micro-Patterned Implants)

  • 허배녕;김대곤;박찬진;조리라
    • 구강회복응용과학지
    • /
    • 제24권1호
    • /
    • pp.67-76
    • /
    • 2008
  • 골조직이 자라 들어갈 수 있는 적절한 크기의 마이크로패터닝을 부여하면 강하고 지속적인 골유착을 이룰 수 있는 생역학적 결합을 이룰 수 있다. 또한 마이크로패터닝을 통해 골조직과 접촉하는 면적을 증가시킴으로써 하중을 적절히 분산시킬 수도 있다. 본 연구에서는 마이크로패터닝의 형태와 크기에 따른 응력의 분산에 대해 연구하였다. 나사 하나에서의 하중을 연구하기 위해 2차원 유한요소분석법을 이용하였다. 임플란트는 무한히 긴 피질골에 100% 접촉하며 골-임플란트 계면은 고정된 것으로 경계조건을 설정한 후 마이크로패터닝의 위치와 수에 따라 5군으로 나누어 축력을 가한 후 최대응력과 응력의 분산양상을 비교하였다. 연구 결과, 마이크로패터닝을 부여하면 일반적인 나사에 비해 응력을 보다 넓게 분산시켰으며 나사의 하방에 마이크로패터닝을 부여한 것이 상방에 부여한 것보다 더 고르게 응력을 분산시켰다. 3개의 마이크로패터닝을 부여한 군이 2개의 마이크로패터닝을 부여한 군에 비해 응력을 넓게 분산시켰으나 응력이 집중되는 부위가 나타났다. 이상의 결과를 통해 마이크로패터닝을 부여하면 응력의 분산효과가 있으며 특히 나사 하방에 부여하는 것이 더 큰 효과를 냄을 알 수 있었다.

정전기력 잉크젯 프린팅을 이용한 마이크로 패터닝에 관한 연구 (A Study for Micro-patterning using an Electrostatic Inkjet)

  • 김준우;최경현;김동수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1103-1106
    • /
    • 2008
  • For the current display process, the innovative micro pattern fabrication process using semiconductor process should be developed, which requires the expensive equipment, the limited process environment and the expensive optic-sensitive material. The effort of process innovation during past several years ends up the limit of cost reduction. The existing ink jet technologies such as a thermal bubble ink jet printing and a piezo ink jet printing are required to shorten the nozzle diameter in order to apply to the micro pattern fabrication. In this paper, as one way to cope these problems the micro pattern equipment based on the electrostatic ink jet has been developed and carried out some experiments.

  • PDF

고정 마스크에 의한 레이저 미세패터닝 쾌속 제작 (Rapid Manufacturing of Laser Micro-Patterning Using Fixed Masks)

  • 신보성;오재용
    • 한국레이저가공학회지
    • /
    • 제9권1호
    • /
    • pp.17-23
    • /
    • 2006
  • The technologies of laser micromachining are changed toward more complex-micropatterning, from the micro circle-shaped hole drilling to the micro arbitrary-shaped hole drilling. In this paper, the fundamental experiments by using DPSS 3rd harmonic $Nd:YVO_4\;laser({\lambda}=355nm)$ were carried out in order to obtain the feasibility of flexible micropatterning by various fixed masks. Fixed masks and Galvano scanners were investigatde to make micro patterns. from these experimental results, micropatterns on PEN film were rapidly manufactured in large area.

  • PDF

광변색 고분자의 광학적 패터닝과 응용 (Optical Patterning and Applications of Photo-chromic Polymers)

  • 김준영;복전융사
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.76-76
    • /
    • 2007
  • Several kinds of photo-chromic polymers containing push-pull structure were synthesized and investigated on optical patterning by photo-induced surface relief gratings (SRG) technique. The azobenzene segment was introduced as a functional group for a photo-triggered tran-cis isomerization. Consequently, we have fabricated micro-size regular pattern by one-step process without photo-mask.

  • PDF

잉크젯 프린팅 기술을 이용한 나노 금속잉크의 인쇄회로기판용 미세배선 형성 (Micro Patterning of Nano Metal Ink for Printed Circuit Board Using Inkjet Printing Technology)

  • 박성준;서상훈;정재우
    • 한국정밀공학회지
    • /
    • 제24권5호
    • /
    • pp.89-96
    • /
    • 2007
  • Inkjet printing has become one of the most attractive manufacturing techniques in industry. Especially inkjet printing technology will soon be part of the PCB (Printed Circuit Board) fabrication processes. Traditional printing on PCB includes screen printing and photolithography. These technologies involve high costs, time-consuming procedures and several process steps. However, by inkjet technology manufacturing time and production costs can be reduced, and procedures can be more efficient. PCB manufacturers therefore willingly accept this inkjet technology to the PCB industry, and are quickly shifting from conventional to inkjet printing. To produce the printed circuit board by the inkjet technology, it must be harmonized with conductive nano ink, printing process, system, and inkjet printhead. In this study, micro patterning of conductive line has been investigated using the piezoelectric printhead driven by a bipolar voltage signal is used to dispense 20-40 ${\mu}m$ diameter droplets and silver nano ink which consists of 1 to 50 nm silver particles that are homogeneously suspended in an organic carrier. To fabricate a conductive line used in PCB with high precision, a printed line width was calculated and compared with printing results.