• Title/Summary/Keyword: micro-hole

Search Result 328, Processing Time 0.029 seconds

Statistical Characterization Fabricated Charge-up Damage Sensor

  • Samukawa Seiji;Hong, Sang-Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.3
    • /
    • pp.87-90
    • /
    • 2005
  • $SiO_2$ via-hole etching with a high aspect ratio is a key process in fabricating ULSI devices; however, accumulated charge during plasma etching can cause etching stop, micro-loading effects, and charge build-up damage. To alleviate this concern, charge-up damage sensor was fabricated for the ultimate goal of real-time monitoring of accumulated charge. As an effort to reach the ultimate goal, fabricated sensor was used for electrical potential measurements of via holes between two poly-Si electrodes and roughly characterized under various plasma conditions using statistical design of experiment (DOE). The successful identification of potential difference under various plasma conditions not only supports the evidence of potential charge-up damage, but also leads the direction of future study.

Charge Doping in Graphene on Highly Polar Mica

  • Sim, Ji-Hye;Go, Taek-Yeong;Ryu, Sun-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.430-430
    • /
    • 2011
  • Graphene, one single atomic layer of graphite, has attracted extensive attention in various research fields since its first isolation from graphite. Application in the future electronics requires better understanding and manipulation of electronic properties of graphene supported on various solid substrates. Here, we present a study on charge doping and morphology of graphene prepared on atomically flat and highly polar mica substrates. Ultra-flat single-layer graphene was prepared by micro-exfoliation of graphite followed by deposition on cleaved mica substrates. Atomic force microscopy (AFM) revealed presence of ultra-thin water films formed in a layer-by-layer manner between graphene and mica substrates. Raman spectroscopy showed that a few angstrom-thick water films efficiently block electron transfer from graphene to mica. Hole doping in graphene caused by underlying mica substrates was also visualized by scanning Kelvin probe microscopy (SKPM).

  • PDF

Cast Defect Quantify on the Simulation for Large Steel Ingots and Its Application (대형잉곳 전산모사 결함 정량화 및 활용연구)

  • NamKung, J.;Kim, Y.C.;Kim, M.C.;Yoon, J.M.;Chae, Y.W.;Lee, D.H.;Oho, S.H.;Kim, N.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.94-97
    • /
    • 2009
  • Cast defect in large steel ingots are estimated in quality and compared each other cast conditions on simulation results by now. The cast defects, micro-crack, shrinkage, pin hole which are predictable in simulation with a reasonable accuracy. In this study, 15 ton steel ingot casting was simulated for solidification model and cast defect prediction. And the real cast was carried out in a foundry for the compeer to the simulation results, the cast defect prediction. Also, the quantity of predicted defect was tried to measuring with the defect mach counting for the various simulated cast conditions. The defect quantity work was used to find the optimized cast condition in DOE(design of experiment) procedure.

  • PDF

An Analysis for Failure Mechanisms and Strength Evaluation on Brazed Joint (브레이징 접합부의 강도평가 및 고장분석)

  • Kang Ki-Weon;Shim Hee-Jin;Lee Byung-Jei;Jhang Kyung-Yung;Kim Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1298-1304
    • /
    • 2006
  • The present paper is aiming at the evaluation for failure mechanisms and static strength of brazed joints used in household electronics. For these purposes, the failure analysis was performed on the various brazed joints, through the bursting, the micro-Victors hardness tests and 3-dimensional X-ray technique. The failure modes of brazed joints were classified into two different types, based on the results of bursting pressure test by means of self-designed internal-pressure testing machine. Their failure mechanism was dependent on the relationship between heat effect occurred in manufacturing process and internal flaws such as incomplete penetration and pin hole. Also, a finite element analysis was performed to evaluate the stress distribution with respect to the heat and the internal flaws.

A Study on Weldability and Prediction of Nugget Shape in Dissimiar Metal Arc Spot Weld (이종 금속의 아크 스폿 용접성 및 접합부 형상 예측에 관한 연구)

  • Kim, Gi Sun;Jang, Gyeong Bok;Gang, Seong Su
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.184-184
    • /
    • 2000
  • In this study, the lap welding between austenitic stainless steel and carbon steel was carried out using arc spot welding process and weldability of welded specimens was estimated. From the tensile-shear strength test, micro Vickers hardness test, and microstructure observation, specimen of 6.5mm(hole of upper plate) showed the best results in terms of tensile-shear strength and nugget shape. And there was an unmixed zone in fusion boundary between the carbon steel base metal and bulk weld metal. This zone had very thin width with the hard microstructure. The shape of weld nugget in arc spot welding of dissimilar metal welds was predicted by searching thermal history of a weld joint through a three-dimensional finite element model. From the numerical analysis, predicted the shape of weld nugget showed good agreement with the experiment(Received August 24, 1999)

A Study on Weldability and Prediction of Nugget Shape in Dissimilar Metal Arc Spot Weld (이종 금속의 아크 스폿 용접성 및 접합부 형상 예측에 관한 연구)

  • 김기순;장경복;강성수
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.57-63
    • /
    • 2000
  • In this study, the lap welding between austenitic stainless steel and carbon steel was carried out using arc spot welding process and weldability of welded specimens was estimated. From the tensile-shear strength test, micro Vickers harness test, and microstructure observation, specimen of $psi6.5mm$(hole of upper plate) showed the best results in terms of tensile-shear strength and nugget shape. And there was an unmix zone in fusion boundary between the carbon steel base metal and bulk weld metal. This zone had very width with the hard microstructure. The shape of weld nugget in arc spot welding of dissimilar metal melds was predicted by searching thermal history of a weld joint through a three-dimensional finite element model. From the numerical analysis, predicted the shape of weld nugget showed good agreement with the experiment.

  • PDF

An Experimental Study on the Fatigue Behavior and Stress Interaction of Arbitrarily Located Defects (II) (For Variable Loads and Distances between Defects) (불규칙하게 분포된 미소결함사이의 응력간섭 및 피로균열 거동에 대한 실험적 연구 (II) (결함간의 거리 및 하중변화를 중심으로))

  • Song, Sam-Hong;Bae, Jun-Su;Choe, Byeong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.201-212
    • /
    • 2001
  • If defects are located far apart, fatigue cracks are independently initiated from them and gradually approach other cracks so that the fatigue life becomes influenced by the crack growth behavior of those interacting cracks. In this study, the effect of the stress interaction between defects on the fatigue crack propagation behavior is investigated experimentally and these results are verified by finite element method. In addition, fatigue crack propagation behaviors under micro hole interaction field are studied.

  • PDF

A study on the surface accuracy according to applied load in burnishing of steel

  • Lee, Y.C.;Yuck, K.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.70-76
    • /
    • 1993
  • Burnishing, as a micro plastic working, is a finishing process used in conjuction with or in replacement of reaming, honing, lapping, and/or grinding. The tool which is a smooth, round steel ball slightly larger than the bore is pushed through pre-machined hole, leaving a closely controlled finish. The major application of the processes is to improve the geometric and mechanical properties of surface such as (1) dimensional accuracy, (2) surface roughness, (3) bearing ratio, (4) surface hardness, (5) wear resistance, (6) fatigue and corrosion resistance, etc. Therefore, this study carried out some experiments to illustrate the theoretical formula and to investigate surface accuracy (e.g. variation of diameter, surface roughness, bearing ratio) in accordance with the applied burnishing load.

  • PDF

The Effect of Copper on Feeding Characteristics in Al-Si Alloys

  • Young-Chan Kim;Jae-Ik Cho
    • Journal of Korea Foundry Society
    • /
    • v.43 no.6
    • /
    • pp.294-301
    • /
    • 2023
  • The effects of Cu on feeding and macro-porosity characteristics were investigated in hypo- (A356 and 319) and hypereutectic (391) aluminum-silicon alloys. T-section and Tatur tests showed that the feeding and macro-porosity characteristics were significantly different between the hypo- and hypereutectic alloys. The hole and the pipe in the T-section and the Tatur casting in hypereutectic alloy showed a rough and irregular shape due to the faceted growth of the primary silicon, while the results of the hypoeutectic alloys exhibited a rather smooth surface. However, the addition of Cu did not strongly affect the macro-feeding behavior. It is known that copper segregates and interferes the feeding process in the last stage of solidification, possibly leading to form more amount of micro shrinkage porosity by the addition of Cu. The macro porosity formation mechanism and feeding properties were discussed upon T-section and Tatur tests together with an alloying addition.

Phase identification and degree of orientation measurements far fine-grained rock forming minerals using micro-area X-ray diffractometer -$Al_{2}SiO_{5}$ Polymorphs- (미소부 X-선 회절분석기를 이용한 미립조암광물의 상동정 및 배향도 측정 -$Al_{2}SiO_{5}$ 3상다형-)

  • 박찬수;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.205-210
    • /
    • 2000
  • Measurements of phase identification and degree of orientation for fine-grained (about 0.3 mm in diameter) minerals in rock samples performed by micro-area X-ray diffractometer.$Al_{2}SiO_{5}$ polymorphs (andalusite, kyanite and sillimanite) were chosen for the measurements and target minerals were existed on thin sections. Micro-area X-ray diffractometer is composed of 3(${\omega}\;{\chi}\;{\phi}$)-circle oscillating goniometer and position sensitive proportional counter (PSPC). $CuK_{\alpha}$ radiation was used as X-ray source and a pin hole ($50\;\mu\textrm{m}$$ in diameter) collimator was selected to focus radiation X-ray onto the target minerals. Phase identification and diffracted X-ray peak indexing were carried out by 3(${\omega}\;{\chi}\;{\phi}$)-circle oscillation measurement. Then, 2(${\omega}\;{\phi}$)-circle oscillation measurement was made for the purpose of searching the prevailing lattice plane of the minerals on thin section surface. Finally, for a selected peak by 2-circle oscillation measurement, X-ray pole figure measurement was executed for the purpose of check the degree of orientation of the single lattice direction and examine its pole distribution. As a result of 3-circle oscillation measurement, it was possible that phase identification among $Al_{2}SiO_{5}$ polymorphs. And from the results of 2-circle oscillation measurement and X-ray pole figure measurement, we recognized that poles of andalusite (122), kyanite (200) and sillimanite (310) lattice plances were well developed with direction normal to each mineral surface plane respectively. Therfore, the measurements used with micro-area X-ray diffractometer in this study will be a useful tool of phase identification and degree of orientation measurement for fine-grained rock forming minerals.

  • PDF