• Title/Summary/Keyword: micro-electric potentials

Search Result 8, Processing Time 0.023 seconds

A Basic Study on Micro-Electric Potential accompanied with Specimen Failure during Uniaxial Compressive Test (일축 압축에 의한 시료 파괴 시 수반되는 미소 전위에 대한 기초 연구)

  • Kim, Jong-Wook;Park, Sam-Gyu;Song, Young-Soo;Sung, Nak-Hun;Kim, Jung-Ho;Cho, Seong-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.3
    • /
    • pp.203-210
    • /
    • 2007
  • As a part of basic studies on monitoring of landslides and slope stability using SP measurements, micro-electric potentials of rock samples were measured accompanied with the rock failure by a uniaxial loading test were measured. The measurement system consists of a 8 channel A/D converter with 24 bit resolution, uniaxial loading tester, strain gages and 4 sets of electrode attached to a rock sample. Rock samples of granite, limestone, and sandstone were tested. Also, mortar samples were tested in order to monitor electric-potentials of a uniform sample. Micro-electric potentials were detected in all saturated samples and the strength of them increased as the loading force increased. Sandstone samples showed the largest strength of micro-electric potential and it followed limestone and granite samples, which indicates a positive relationship with porosity of rocks. The mechanism generating these micro-electric potential can be explained in terms of electro-kinetics. In case of dry samples, micro-electric potential could be observed only in sandstone samples, where piezoelectric effect played main role due to high contents of quartz in sandstone samples. We found that biggest micro-electric potentials were observed at the electrodes near the crack surface of rock samples. This is very encouraging result that SP monitoring can be applied to predicting landsliding or to estimate collapsing position combining with monitoring of acoustic emissions.

Particle Loss Reduction Technique Using Dielectrophoresis in Microfluidic Channel (유전영동을 이용한 미세유체채널 내부의 입자 손실 저감 기술)

  • Kang, Dong-Hyun;Kim, Min-Gu;Kim, Yong-Jun
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.357-362
    • /
    • 2011
  • This paper demonstrates a novel electrodynamic technique to remove particles from the wall of microchannels. Dielectrohporesis(DEP) is generated by applying alternating electric potentials to the interdigitated electrodes integrated at the bottom of the micro-channel. The proposed technique is applied to a general microfluidic channel as a feasibility test. To examine the wall loss reduction efficiency, 10 ${\mu}m$ diameter Polystyrene latexes(PSL) were supplied to the inlet of the device. Then, the concentration of collected particles through devices was measured. In the experiment for 10 ${\mu}m$ diameter PSL particles, the concentration of the injected particles was $174.25{\times}10^4$ particles/ml. However, the concentration of collected particles at the outlet was $52.25{\times}10^4$ particles/ml. Only 30 % of particles had arrived at the outlet and 70 % of particles had adhered to the wall of the microfluidic channel. By applying alternating electric potentials from 0 to 20 $V_{pp}$ at 3 MHz, the concentration of injected particles was 135.00${\times}10^4$ particles/ml, the concentration of collected particles was increased as $105.25{\times}10^4$ particles/ml at 20 $V_{pp}$ at the outlet. When the electric potential was 20 $V_{pp}$, the particle loss was decreased by 39 % (initial loss: 70 %, loss at 20 Vpp: 31 %) with 10 ${\mu}m$ particle. The particle loss was decreased along to the incensement of electric potentials and the enlargement of the diameter of particles. According to these measured results, it was confirmed that the proposal of using DEP technique could be a good candidate for particle loss reduction in micro-particle processing chip application. Moreover, it is expected that the proposed technique could enhance performance of microfluidic and biochip devices.

Static analysis of laminated piezo-magnetic size-dependent curved beam based on modified couple stress theory

  • Arefi, M.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.145-153
    • /
    • 2019
  • Modified couple stress formulation and first order shear deformation theory are used for magneto-electro-elastic bending analysis of three-layered curved size-dependent beam subjected to mechanical, magnetic and electrical loads. The governing equations are derived using a displacement field including radial and transverse displacements of middle surface and a rotation component. Size dependency is accounted based on modified couple stress theory by employing a small scale parameter. The numerical results are presented to study the influence of small scale parameter, initial electric and magnetic potentials and opening angle on the magneto-electro-elastic bending results of curved micro beam.

An analytical study on free vibration of magneto electro micro sandwich beam with FG porous core on Vlasov foundation

  • Kazem Alambeigi;Mehdi Mohammadimehr;Mostafa Bamdad
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.423-439
    • /
    • 2023
  • The aim of this paper is to investigate the free vibration behavior of the micro sandwich beam composing of five layers such as functionally graded (FG) porous core, nanocomposite reinforced by carbon nanotubes (CNTs) and piezomagnetic/piezoelectric layers subjected to magneto electrical potential resting on silica aerogel foundation. The effect of foundation has been taken into account using Vlasov model in addition to rigid base assumption. For this purpose, an iterative technique is applied. The material properties of the FG porous core and FG nanocomposite layers are considered to vary throughout the thickness direction of the beams. Based on the Timoshenko beam theory and Hamilton's principle, the governing equations of motion for the micro sandwich beam are obtained. The Navier's type solution is utilized to obtain analytical solutions to simply supported micro sandwich beam. Results are verified with corresponding literatures. In the following, a study is carried out to find the effects of the porosity coefficient, porous distribution, volume fraction of CNT, the thickness of silica aerogel foundation, temperature and moisture, geometric parameters, electric and magnetic potentials on the vibration of the micro sandwich beam. The results are helpful for the design and applications of micro magneto electro mechanical systems.

Study on The Electron-Beam Optics in The Micro-Column for The Multi-Beam Lithography (다중빔 리소그래피를 위한 초소형 컬럼의 전자빔 광학 해석에 관한 연구)

  • Lee, Eung-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.43-48
    • /
    • 2009
  • The aim of this paper is to describe the development of the electron-beam optic analysis algorithm for simulating the e-beam behavior concerned with electrostatic lenses and their focal properties in the micro-column of the multi-beam lithography system. The electrostatic lens consists of an array of electrodes held at different potentials. The electrostatic lens, the so-called einzel lens, which is composed of three electrodes, is used to focus the electron beam by adjusting the voltages of the electrodes. The optics of an electron beam penetrating a region of an electric field is similar to the situation in light optics. The electron is accelerated or decelerated, and the trajectory depends on the angle of incidence with respect to the equi-potential surfaces of the field. The performance parameters, such as the working distances and the beam diameters are obtained by the computational simulations as a function of the focusing voltages of the einzel lens electrodes. Based on the developed simulation algorithm, the high performance of the micro-column can be achieved through optimized control of the einzel lens.

  • PDF

Electrostatic Interference Model of EHD Spraying from an Array of Cone Jets in Electrospray Micro-Thruster

  • Quang Tran Si Bui;Byun Do-Young;Kim Man-Young;Dat Nguyen Vu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.30-33
    • /
    • 2006
  • Onset voltage plays a crucial role in the design of a spray microthruster. This paper presents an analytical electrostatic model to predict the behavior of onset voltage in an array of emitters. The basic idea of this method is to superimpose the electric potentials obtained from each individual emitter in an array of emitters. The results show that if one emitter operates and the other neighboring emitters are dry, the potential required for cone-jet spraying generally increases as the emitter spacing decreases (due to electrical shielding). However at very close spacing the potential can decrease. If all emitters operate at the same time, the phenomenon that even at very close spacing the onset voltage required for cone-jet spraying increases merely as the emitter spacing decreases.

  • PDF

Free vibration of electro-magneto-thermo sandwich Timoshenko beam made of porous core and GPLRC

  • Safari, Mohammad;Mohammadimehr, Mehdi;Ashrafi, Hossein
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.115-128
    • /
    • 2021
  • In this article, free vibration behavior of electro-magneto-thermo sandwich Timoshenko beam made of porous core and Graphene Platelet Reinforced Composite (GPLRC) in a thermal environment is investigated. The governing equations of motion are derived by using the modified strain gradient theory for micro structures and Hamilton's principle. The magneto electro are under linear function along the thickness that contains magnetic and electric constant potentials and a cosine function. The effects of material length scale parameters, temperature change, various distributions of porous, different distributions of graphene platelets and thickness ratio on the natural frequency of Timoshenko beam are analyzed. The results show that an increase in aspect ratio, the temperature change, and the thickness of GPL leads to reduce the natural frequency; while vice versa for porous coefficient, volume fractions and length of GPL. Moreover, the effect of different size-dependent theories such as CT, MCST and MSGT on the natural frequency is investigated. It reveals that MSGT and CT have most and lowest values of natural frequency, respectively, because MSGT leads to increase the stiffness of micro Timoshenko sandwich beam by considering three material length scale parameters. It is seen that by increasing porosity coefficient, the natural frequency increases because both stiffness and mass matrices decreases, but the effect of reduction of mass matrix is more than stiffness matrix. Considering the piezo magneto-electric layers lead to enhance the stiffness of a micro beam, thus the natural frequency increases. It can be seen that with increasing of the value of WGPL, the stiffness of microbeam increases. As a result, the value of natural frequency enhances. It is shown that in hc/h = 0.7, the natural frequency for WGPL = 0.05 is 8% and 14% less than its for WGPL = 0.06 and WGPL = 0.07, respectively. The results show that with an increment in the length and width of GPLs, the natural frequency increases because the stiffness of micro structures enhances and vice versa for thickness of GPLs. It can be seen that the natural frequency for aGPL = 25 ㎛ and hc/h = 0.6 is 0.3% and 1% more than the one for aGPL = 5 ㎛ and aGPL = 1 ㎛, respectively.

Preparation of Polymer/Drug Nano- and Micro-Particles by Electrospraying

  • Lee, Jong-Hwi;Park, Chul-Ho;Kim, Min-Young;Yoo, Ji-Youn;Kim, Ki-Hyun;Lee, Jong-Chan
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.217-217
    • /
    • 2006
  • The surface energy control capability of electrohydrodynamic force provides electrospraying with various potential advantages such as simple particle size control, mono-dispersity, high recovery, and mild processing conditions. Herein, the one step nano-encapsulation of protein drugs using electrospraying was developed. The major processing parameters such as the conductivity of spraying liquids, flow rate, the distance between electric potentials, etc were examined to obtain the maximum efficiency. The recovery of particles was found relatively high as could be conjectured based on the principle of electrospraying. When organic solvents were employed, the processing windows of electrospraying were relatively narrow than water systems. Efficient nano-encapsulation of BSA with polymers was conveniently achieved using electrospraying at above 12 kV.

  • PDF