• Title/Summary/Keyword: micro-POFA

Search Result 2, Processing Time 0.016 seconds

Experimental Study on the Influence of Superplasticizer on the Early Hydration Properties of Cement Paste Containing Micro-POFA (감수제의 사용이 micro-POFA 혼입 시멘트 페이스트의 초기 수화 특성에 미치는 영향에 관한 실험적 연구)

  • Wi, Kwangwoo;Lee, Han-Seung;Lim, Seungmin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.4
    • /
    • pp.269-279
    • /
    • 2021
  • Palm Oil Fuel Ash(POFA) has been widely used to replace Portland cement to enhance the mechanical properties and durability of concrete. However, it reduces the workability of concrete due to the high content of unburnt carbon and its angular shape requiring the usage of superplasticizer to ensure a proper flowability. In this study, effects of different types and dosage of superplasticizer on the early mechanical and hydration properties of cement paste containing micro-POFA were evaluated using mini-slump test, early compressive strength, TGA, XRD, and SEM. The results indicated that the flowability of cement paste containing micro-POFA reduced as the replacement ratio of micro-POFA increased. As the dosage of superplasticizer increased, the flowability was also increased. In addition, the usage of superplasticizer reduced the early compressive strength, and the strength decreased with an increase in the dosage of superplasticizer. It was confirmed that superplasticizer hindered the formation of C-S-H leading to a relative increase in the formation of Ca(OH)2.

Influence of palm oil fuel ash on behaviour of green high-performance fine-grained cement mortar

  • Sagr, Salem Giuma Ibrahim;Johari, M.A. Megat;Mijarsh, M.J.A.
    • Advances in materials Research
    • /
    • v.11 no.2
    • /
    • pp.121-146
    • /
    • 2022
  • In the recent years, the use of agricultural waste in green cement mortar and concrete production has attracted considerable attention because of potential saving in the large areas of landfills and potential enhancement on the performance of mortar. In this research, microparticles of palm oil fuel ash (POFA) obtained from a multistage thermal and mechanical treatment processes of raw POFA originating from palm oil mill was utilized as a pozzolanic material to produce high-performance cement mortar (HPCM). POFA was used as a partial replacement material to ordinary Portland cement (OPC) at replacement levels of 0, 5, 10, 15, 20, 25, 30, 35, 40% by volume. Sand with particle size smaller than 300 ㎛ was used to enhance the performance of the HPCM. The HPCM mixes were tested for workability, compressive strength, ultrasonic pulse velocity (UPV), porosity and absorption. The results portray that the incorporation of micro POFA in HPCMs led to a slight reduction in the compressive strength. At 40% replacement level, the compressive strength was 87.4 MPa at 28 days which is suitable for many high strength applications. Although adding POFA to the cement mixtures harmed the absorption and porosity, those properties were very low at 3.4% and 11.5% respectively at a 40% POFA replacement ratio and after 28 days of curing. The HPCM mixtures containing POFA exhibited greater increase in strength and UPV as well as greater reduction in absorption and porosity than the control OPC mortar from 7 to 28 days of curing age, as a result of the pozzolanic reaction of POFA. Micro POFA with finely graded sand resulted in a dense and high strength cement mortar due to the pozzolanic reaction and increased packing effect. Therefore, it is demonstrated that the POFA could be used with high replacement ratios as a pozzolanic material to produce HPCM.