• 제목/요약/키워드: micro station

검색결과 139건 처리시간 0.029초

구름물리 관측시스템 및 산출물 검정 (Cloud Physics Observation System (CPOS) and Validation of Its Products)

  • 장기호;오성남;정기덕;양하영;이명주;정진임;조요한;김효경;박균명;염성수;차주완
    • 대기
    • /
    • 제17권1호
    • /
    • pp.101-108
    • /
    • 2007
  • To observe and analyze the cloud and fog characteristics, the METeorological Research Institute (METRI) has established the Cloud Physics Observation System (CPOS) by implementing the cloud observation instruments: Forward Scattering Spectrometer Probe (FSSP), PARticle SIze and VELocity (PARSIVEL), Microwave Radiometer (MWR), Micro Rain Radar (MRR), and 3D-AWS at the Daegwallyeong Enhanced Mountain Weather Observation Center. The cloud-related products of CPOS and the validation status for the size distribution of FSSP, the precipitable water of MWR, and the rainfall rate of MRR and PARSIVEL are described.

Evaluation of SAR Image Quality

  • Lee Young-ran;Kim Kwang Young;Kwak Sunghee;Shin Dongseok;Jeong Soo;Kim Kyung-Ok
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.397-400
    • /
    • 2004
  • Synthetic Aperture Radar(SAR) is an active micro­wave instrument that performs high-resolution observation under almost all weather conditions. Although there are many advantages of SAR instrument, many complicated steps are involved in order to generate SAR image products. Many research and algorithms have been proposed to process radar signal and to increase the quality of SAR products. However, it is hard to find research which compare the quality of SAR products generated with different algorithms and processing methods. In our previous research, a SAR processing s/w was developed for a ground station. In addition, quality assessment procedures and their test parameters inside a SAR processor was proposed. The purpose of this paper is to evaluate the quality of SAR images generated from the developed SAR processing s/w. However, If there are no direct measurements such as radar reflector or scattering field measurement values it is difficult to compare SAR images generated with different methods. An alternative procedures and parameters for SAR image quality evaluation are presented and the problems involved in the comparison methods are discussed. Experiments based on real data have been conducted to evaluate and analyze quality of SAR images.

  • PDF

Spectral Distribution and Spectral Absorption of Suspended particulates in Waters of Sanya Bay

  • Yang, Dingtian;Cao, Wenxi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.495-498
    • /
    • 2006
  • Optical profile and spectral absorption of suspended solids in waters of Sanya bay was measured on August 8-14, 2003. Optical profile was taken by using MicroPro optical profile. Apparent optical indexes, vertical diffuse attenuation coefficient ($K_d$) and water leaving radiance (Lw), were calculated. $K_d$ at the blue end of the spectrum was greater than that at the red end of the spectrum in waters near Sanya River mouth, however, in waters near open sea, $K_d$ at the blue end of the spectrum was smaller than that at the red end of the spectrum. Distribution of water leaving radiance was relatively higher in waters near Sanya River mouth, but relatively weaker in near open sea water. Spectral absorption of suspended particulates was also measured. Results showed that the spectral absorption of chlorophyll a was greater in waters near Sanya river mouth, but relatively weaker in waters near open sea, which indicated higher concentration of phytoplankton in waters near Sanya river mouth. Except for water at the 5th sampling station, the ratio of spectral absorption of chlorophyll a to total suspended particulates in surface waters was greater than that in bottom waters at all stations.

  • PDF

높이별 기상변화를 고려한 초고층 건축물의 외피종류별 냉난방 부하특성 분석 (Effect of the building envelope on heating and cooling load in super tall building considering the meteorological changes with height)

  • 최종규;김양수;송두삼
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.337-344
    • /
    • 2012
  • Today, the number of super tall buildings are under construction or being planed in Middle East and Asian Countries. For example the burj Khalifa, the tallest building in the world, is completed in 2008 and the height of that is about 800m. Also, Lotte World Tower is under construction in Korea. External environmental conditions such as wind speed, air temperature, humidity and solar radiation around the super tall building differs according to the building height due to the vertical micro climate change. However, the meteorological information used for AC design of building is obtained typically from standard surface meterological station data(~2m above the ground). In this paper the effect of the building envelope on heating and cooling load in super tall building considering the meteorological changes with height was analyzed with simulation method. As results of this research, the guideline to select the building envelop alternatives for super tall building will be suggested in this paper.

  • PDF

Biofouling and Microbial Induced Corrosion -A Case Study

  • Mohammed, R.A.;Helal, A.M.;Sabah, N.
    • Corrosion Science and Technology
    • /
    • 제7권1호
    • /
    • pp.27-34
    • /
    • 2008
  • In industrial and fluid handling systems, frequently the protective film forming materials suffer from severe corrosion due to microbial effects. As an example, various micro-organisms, including bacteria, exist in seawater normally fed to power and desalination plants. Unless seawater intakes are properly disinfected to control these microbial organisms, biological fouling and microbial induced corrosion (MIC) will be developed. This problem could destroy metallic alloys used for plant construction. Seawater intakes of cogeneration plants are usually disinfected by chlorine gas or sodium hypochlorite solution. The dose of disinfectant is designed according to the level of contamination of the open seawater in the vicinity of the plant intake. Higher temperature levels, lower pH, reduced flow velocity and oxidation potential play an important role in the enhancement of microbial induced corrosion and bio-fouling. This paper describes, in brief, the different types of bacteria, mechanisms of microbiological induced corrosion, susceptibility of different metal alloys to MIC and possible solutions for mitigating this problem in industry. A case study is presented for the power plant steam condenser at Al-Taweelah B-station in Abu Dhabi. The study demonstrates resistance of Titanium tubes to MIC.

도시기후 평가와 방재를 위한 도시기상 수치모의 (Numerical Simulation for Urban Climate Assessment and Hazard)

  • 오성남
    • 한국방재학회지
    • /
    • 제2권4호
    • /
    • pp.40-47
    • /
    • 2002
  • Since it is important to understand the bio-climatic change in Seoul for ecological city planning in the future, this paper gives an overview on bio-climate analysis of urban environments at Seoul. We analyzed its characteristics in recent years using the observations of 24 of Automatic Weather Station (AWS) by Korea Meteorological Administration (KMA). In urbanization, Seoul metropolitan area is densely populated and is concentrated with high buildings. This urban activity changes land covering, which modifies the local circulation of radiation, heat and moisture, precipitation and creating a specific climate. Urban climate is evidently manifested in the phenomena of the increase of the air temperature, called urban heat Island and in addition urban sqall line of heavy rain. Since a city has its different land cover and street structure, these form their own climate character such as climate comfort zone. The thermal fold in urban area such as the heat island is produced by the change of land use and the air pollution that provide the bio-climate change of urban eco-system. The urban wind flow is the most important climate element on dispersion of air pollution, thermal effects and heavy shower. Numerical modeling indicates that the bio-climatic transition of wind wake in urban area and the dispersion of the air pollution by the simulations of the wind variation depend on the urban land cover change. The winds are separately simulated on small and micro-scale at Seoul with two kinds of kinetic model, Witrak and MUKLIMO.

  • PDF

Study on the micro-scale simulation of wind field over complex terrain by RAMS/FLUENT modeling system

  • Li, Lei;Zhang, Li-Jie;Zhang, Ning;Hu, Fei;Jiang, Yin;Xuan, Chun-Yi;Jiang, Wei-Mei
    • Wind and Structures
    • /
    • 제13권6호
    • /
    • pp.519-528
    • /
    • 2010
  • A meteorological model, RAMS, and a commercial computational fluid dynamics (CFD) model, FLUENT are combined as a one-way off-line nested modeling system, namely, RAMS/FLUENT system. The system is experimentally applied in the wind simulation over a complex terrain, with which numerical simulations of wind field over Foyeding weather station located in the northwest mountainous area of Beijing metropolis are performed. The results show that the method of combining a meteorological model and a CFD model as a modeling system is reasonable. In RAMS/FLUENT system, more realistic boundary conditions are provided for FLUENT rather than idealized vertical wind profiles, and the finite volume method (FVM) of FLUENT ensures the capability of the modeling system on describing complex terrain in the simulation. Thus, RAMS/FLUENT can provide fine-scale realistic wind data over complex terrains.

집속 아르곤 이온 레이저 빔을 이용한 레이저 유도 직접 구리 패터닝 (Laser-Induced Direct Copper Patterning Using Focused $Ar^+$ Laser Beam)

  • 이홍규;이경철;안민영;이천
    • 한국전기전자재료학회논문지
    • /
    • 제13권11호
    • /
    • pp.969-975
    • /
    • 2000
  • Laser direct writing of micro-patterned copper lines has been achieved by pyrolytic decomposition of copper formate films (Cu(HCOO)$_2$.4$H_2O$), as a metallo-organic precursor, using a focused CW Ar$^{+}$ laser beam (λ=514nm) on PCB boards and glass substrates. The linewidth and thickness of the lines wee investigated as a functin of laser power and scan speed. The profiles of the lines were measured by scanning electron microscope (SEM), surface profiler ($\alpha$-step) and atomic force measured by scanning electron microscope (SEM), surface profiler ($\alpha$-step) and atomic force microscopy (AFM). The electrical resistivities of the patterned lines were also investigated as a function of laser parameters using probe station and semiconductor analyzer. We compared resistivities of the patterned copper lines with these of the Cu bulk. Resistivities decreased due to changes in morphology and porosity of the deposit, which were about 3.8 $\mu$$\Omega$cm and 12$\mu$$\Omega$cm on PCB and glass substrates after annealing at 30$0^{\circ}C$ for 5 minutes.s.

  • PDF

Design and characterization of a compact array of MEMS accelerometers for geotechnical instrumentation

  • Bennett, V.;Abdoun, T.;Shantz, T.;Jang, D.;Thevanayagam, S.
    • Smart Structures and Systems
    • /
    • 제5권6호
    • /
    • pp.663-679
    • /
    • 2009
  • The use of Micro-Electro-Mechanical Systems (MEMS) accelerometers in geotechnical instrumentation is relatively new but on the rise. This paper describes a new MEMS-based system for in situ deformation and vibration monitoring. The system has been developed in an effort to combine recent advances in the miniaturization of sensors and electronics with an established wireless infrastructure for on-line geotechnical monitoring. The concept is based on triaxial MEMS accelerometer measurements of static acceleration (angles relative to gravity) and dynamic accelerations. The dynamic acceleration sensitivity range provides signals proportional to vibration during earthquakes or construction activities. This MEMS-based in-place inclinometer system utilizes the measurements to obtain three-dimensional (3D) ground acceleration and permanent deformation profiles up to a depth of one hundred meters. Each sensor array or group of arrays can be connected to a wireless earth station to enable real-time monitoring as well as remote sensor configuration. This paper provides a technical assessment of MEMS-based in-place inclinometer systems for geotechnical instrumentation applications by reviewing the sensor characteristics and providing small- and full-scale laboratory calibration tests. A description and validation of recorded field data from an instrumented unstable slope in California is also presented.

이른 여름 동중국해 대륙사면의 해양환경과 소형 식물플랑크톤 군집의 연직분포 특성 (Vertical Profiles of Marine Environments and Micro-phytoplankton Community in the Continental Slope Area of the East China Sea in Early Summer 2009)

  • 윤양호
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제16권3호
    • /
    • pp.151-162
    • /
    • 2013
  • 2009년 이른 여름 동중국해 동부의 대륙사면을 대상으로 해양환경과 소형 식물플랑크톤 군집을 조사하였다. 수온약층은 뚜렷하지 않고 수심에 따라 완만하게 감소하였다, 염분은 표층에서 낮고 비교적 깊은 수심까지 균일한 분포를 보이나, 중간 수층이하에서는 수심과 비례하여 150~200 m에서 최댓값을 보인 다음 감소하였으나, 변화 폭은 크지 않았다. sigma-t의 변화는 수온에 의해 지배되어, 표층에서 수심과 함께 완만히 증가하여 약 500 m에서 표층보다 약 3 $kg/m^3$ 높은 값을 나타내었다. 광량은 해수 표층에서 급격히 감소하여, 보상심도는 약 100 m 수심에 위치하였다. 엽록소 a의 연직분포는 수온이나 염분보다 광량에 더욱 영향을 받는 것으로 나타났으며, 보상심도에서 최댓값을 나타내었다. 소형 식물플랑크톤 군집은 56속 103종으로 비교적 다양하였고, 세포밀도 역시 엽록소 a가 최댓값을 나타내는 수심에서 112.0~470.0 cells/L로 가장 높게 나타났다. 우점종에서 극우점하는 종은 없고, 낮은 점유율로 다양한 종이 출현하지만, 일부 정점에서 규질편모조류인 Octactis octonaria나 규조류인 Leptocylindrus mediterraneus에 의해 26%의 우점율은 나타내는 것은 이례적이다. 본 연구의 결과는 개방된 빈영양 해역의 식물플랑크톤 등 미소생물의 군집 해석은 표층, 중층 및 저층과 같은 일정 수심 간격의 조사가 아닌, 해양환경의 연직분포나 엽록소 최대층의 파악과 같은 연속관측의 결과와 연계된 생태연구가 필수적임을 지적하고 있다.