• Title/Summary/Keyword: micro satellite

Search Result 184, Processing Time 0.034 seconds

Development of Active Micro-Vibration Isolator using Electromagnet (전자석을 사용한 능동 미소진동 절연장치 개발)

  • Lee, Dae-Oen;Park, Gee-Yong;Han, Jae-Hung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.390-394
    • /
    • 2013
  • Observation satellites carrying high precision optical payload require extremely stringent pointing stability that may be violated in the presence of the disturbances corning from reaction wheels, cryocoolers or other actuating components onboard the satellite. The most common method to protect the sensitive payloads from external disturbances is implementation of vibration isolator. In this paper development of a single axis active vibration isolator using electromagnet and its performance in isolating micro-vibration is presented. The main components of the developed isolator are membrane structure providing the isolator with the required stiffness and an electromagnet for active control. The performance test results show that additional damping can be achieved by active control without degrading isolation performance in high frequency region and that the developed isolator can effectively isolate micro-vibration.

  • PDF

Performance Prediction and Analysis of a MEMS Solid Propellant Thruster (MEMS 고체 추진제 추력기의 성능예측 및 분석)

  • Jung, Juyeong;Lee, Jongkwang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.1-7
    • /
    • 2017
  • The performance of a MEMS solid propellant thruster was predicted and analyzed through internal ballistics model and CFD analysis. The nozzle throat was $416{\mu}m$, and the area ratio of the nozzle was 1.85. As a result of the internal ballistics model, chamber pressure increased up to 197 bar and the maximum thrust was 3,836 mN. In CFD analysis, the chamber pressure of the internal ballistics model was applied as the operating pressure, and the CFD model was divided into an adiabatic and a heat loss model. As a result, the maximum thrust of the adiabatic model was 14.92% lower than that of the internal ballistics model, and the effect of heat loss was insignificant.

Development of Sub-200 W Laboratory Model Hall Thrusters for Small and Micro Satellites (소형 및 초소형위성 활용을 위한 200 W 이하 저전력 홀 전기추력기 랩모델 연구개발)

  • Lee, Dongho;Kim, Holak;Doh, Guentae;Kim, Youngho;Park, Jaehong;Lee, Jaejun;Choe, Wonho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.40-46
    • /
    • 2022
  • Hall thrusters are one of the electric propulsion, where ions are accelerated to generate thrust and are widely utilized in space missions due to their high specific impulses. Recently, as the utilization of small and micro satellites with the mass of similar or less than 100 kg is highly increasing, the importance of research and development of the low-power electric propulsion is also raised. In this study, we developed two sub-200 W or less class, laboratory model Hall thrusters and measured the thrust and analyzed the discharge characteristics. Consequently, we obtained 2.5-9.0 mN of thrust, 600-1,150 s of specific impulse, and 15-28% of anode efficiency at 50-175 W of anode power.

Synergy of monitoring and security

  • Casciati, Sara;Chen, Zhi Cong;Faravelli, Lucia;Vece, Michele
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.743-751
    • /
    • 2016
  • An ongoing research project is devoted to the design and implementation of a satellite based asset tracking for supporting emergency management in crisis operations. Due to the emergency environment, one has to rely on a low power consumption wireless communication. Therefore, the communication hardware and software must be designed to match requirements, which can only be foreseen at the level of more or less likely scenarios. The latter aspect suggests a deep use of a simulator (instead of a real network of sensors) to cover extreme situations. The former power consumption remark suggests the use of a minimal computer (Raspberry Pi) as data collector.

A Genetic Marker Associated with Resistance to Lymphocystis Disease in the Olive Flounder, Paralichthys olivaceus (넙치 Lymphocystis 바이러스 질병 내성 유전자 Marker)

  • Kang, Jung-Ha;Nam, Bo-Hae;Han, Hyon-Sob;Lee, Sang-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.3
    • /
    • pp.128-132
    • /
    • 2007
  • We identified a microsatellite marker, Poli121TUF, which appears to be significantly linked (P<0.001) with a lymphocystis disease virus (LCDV)-resistance gene in the olive flounder, Paralichthys olivaceus. The olive flounder is an economically important food fish, that is widely cultured in Korea, Japan, and China. Lymphocystis disease has spread in these countries and has seriously reduced the economic value of the fish. LCDV causes lymphocystis cells (LC) to form on the body surface, fins, gills, mouth, and intestine. Fish with LC lose commercial value due to their deformed appearance. The identified micro satellite marker can be used as a candidate locus for marker-assisted selection (MAS) in order to enhance the efficiency of selection for LCDV resistance in the olive flounder.

Characteristics of Microsatellites in the Transcript Sequences of the Laccaria bicolor Genome

  • Li, Shuxian;Zhang, Xinye;Yin, Tongming
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.474-479
    • /
    • 2010
  • In this paper, we analyzed the microsatellites in the transcript sequences of the whole Laccaria bicolor genome. Our results revealed that, apart from the triplet repeats, length diversification and richness of the detected microsatellites positively correlated with their repeat motif lengths, which were distinct from the variation trends observed for the transcriptional microsatellites in the genome of higher plants. We also compared the microsatellites detected in the genic regions and in the nongenic regions of the L. bicolor genome. Subsequently, SSR primers were designed for the transcriptional microsatellites in the L. bicolor genome. These SSR primers provide desirable genetic resources to the ectomycorrhizae community, and this study provides deep insight into the characteristics of the micro satellite sequences in the L. bicolor genome.

Property Analyses of Deposits and Landform in Tidal Flat using Satellite Image

  • Jo, Myung-Hee;Sugimori, Yasuhiro;Jo, Wha-Ryong
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.110-115
    • /
    • 1998
  • Through the ISODATA method, the micro-landform of Julpo-Bay tidal flat was classified into mudflat, mixedflat, and sandflat using Landsat TM image. Each showed an apparent differences in its topographical characteristics and grain size composition. For example, mudflats are formed with flat faces and tidal channel of dissected gully. Its characteristics of grain size analysis that the grains have less than mean grain size 4 phi. Its sorting is bad (higher than 1 S.D.), and it showed strongly positive skewness. But sandflat is topographically flat without tidal channel. It has developed with ripple marks. According to the grain size analysis of deposits, the soil is coarse size with 90% of sand and its sorting is well(lower than 1 S.D.) Also, it showed strongly negative skewness. Mixed flat is in between mudflat and sandflat in its characteristics.

  • PDF

Overview of new developments in satellite geophysics in 'Earth system' research

  • Moon Wooil M.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.3-17
    • /
    • 2004
  • Space-borne Earth observation technique is one of the most cost effective and rapidly advancing Earth science research tools today and the potential field and micro-wave radar applications have been leading the discipline. The traditional optical imaging systems including the well known Landsat, NOAA - AVHRR, SPOT, and IKONOS have steadily improved spatial imaging resolution but increasing cloud covers have the major deterrent. The new Earth observation satellites ENVISAT (launched on March 1 2002, specifically for Earth environment observation), ALOS (planned for launching in 2004 - 2005 period and ALOS stands for Advanced Land Observation Satellite), and RADARSAT-II (planned for launching in 2005) all have synthetic aperture radar (SAR) onboard, which all have partial or fully polarimetric imaging capabilities. These new types of polarimetric imaging radars with repeat orbit interferometric capabilities are opening up completely new possibilities in Earth system science research, in addition to the radar altimeter and scatterometer. The main advantage of a SAR system is the all weather imaging capability without Sun light and the newly developed interferometric capabilities, utilizing the phase information in SAR data further extends the observation capabilities of directional surface covers and neotectonic surface displacements. In addition, if one can utilize the newly available multiple frequency polarimetric information, the new generation of space-borne SAR systems is the future research tool for Earth observation and global environmental change monitoring. The potential field strength decreases as a function of the inverse square of the distance between the source and the observation point and geophysicists have traditionally been reluctant to make the potential field observation from any space-borne platforms. However, there have recently been a number of potential field missions such as ASTRID-2, Orsted, CHAMP, GRACE, GOCE. Of course these satellite sensors are most effective for low spatial resolution applications. For similar objects, AMPERE and NPOESS are being planned by the United States and France. The Earth science disciplines which utilize space-borne platforms most are the astronomy and atmospheric science. However in this talk we will focus our discussion on the solid Earth and physical oceanographic applications. The geodynamic applications actively being investigated from various space-borne platforms geological mapping, earthquake and volcano .elated tectonic deformation, generation of p.ecise digital elevation model (DEM), development of multi-temporal differential cross-track SAR interferometry, sea surface wind measurement, tidal flat geomorphology, sea surface wave dynamics, internal waves and high latitude cryogenics including sea ice problems.

  • PDF

Design of the Active Optical Compensation Movements for Image Stabilization of Small Satellite (소형 위성 영상안정화를 위한 능동형 광학 보정장치 설계)

  • Hwang, Jai Hyuk;Yang, Ji Youn;Park, Jean Ho;Jo, Jeong Bin;Kang, Myoung Soo;Bae, Jae Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.472-478
    • /
    • 2015
  • This paper describes the design of the active optical compensation movements(at focal plane, secondary mirror) for the image stabilization of a small satellite camera. The movements can correct optical misalignment on-line and directly compensate vibration disturbances in the focal plane. Since the devices are installed inside the space camera, it has an remarkable advantage to deal with the structural deformation of a space camera effectively. In this paper, the requirements of the active optical compensation movements for 1m GSD small satellite camera have been analyzed. Based on the established requirements, the design of the active compensation movements have been conducted. The designed active optical compensation system can control 5 axes movements independently to compensate micro-vibration disturbances in the focal plane and to refocus the optical misaligned satellite camera.

A VIEW PLASMA MOTION OF HALL EFFECT THRUSTER WITH PARTICLE SIMULATION (입자모사를 통한 HALL EFFECT THRUSTER의 플라즈마 운동 이해)

  • Lee, J.J.;Jeong, S.I.;Choe, W.;Lee, J.S.;Lim, Y.B.;Seo, M.H.;Kim, H.M.
    • Bulletin of the Korean Space Science Society
    • /
    • 2007.10a
    • /
    • pp.139-143
    • /
    • 2007
  • Electric propulsion has become a cost effective and sound engineering solution for many space applications. The success of SMART-1 and MUSES-C developed by European Space Agency (ESA) and Japan Aerospace Exploration Agency (JAXA) each proved that even small spacecraft could accomplish planetary mission with electric propulsion systems. A small electric propulsion system which is Hall effect thruster like SMART-1 is under development by SaTReC and GDPL (Glow Discharge Plasma Lab.) in KAIST for the next microsatellite, STSAT-3. To achieve optimized propulsion system, it is very necessary to understand plasma motions of Hall effect thruster. In this paper, we try to approach comprehensive plasma model with the particle simulation complementary to Particle In Cell (PIC) simulation. We think these two different approaches will help experimenters to optimize Hall effect thruster performances.

  • PDF