• 제목/요약/키워드: micro press

검색결과 572건 처리시간 0.024초

소재접합 일체성형 판재의 플래시 용접성과 성형성에 관한 연구 (Study on Flash Weldability and Formability in Steel Sheets by Tailor Welded Blank)

  • 최문일;민경복;강성수
    • 소성∙가공
    • /
    • 제7권4호
    • /
    • pp.400-406
    • /
    • 1998
  • The press formability analysis of welding parts was studied in the current work by the tailor welded blank. The press formability was tested by means of the flash weldability and the formability for two kinds of materials (SPCC & S35C). The results indicate that SPCC & S35C steel sheets showed good weldability and formability after an optimum welding conditions. The independent operation variables were characterized by strength of welding parts, deformation after the welding, press formability of welding parts and productibility of welding. The weldability and the quality of welding parts of the flashed SPCC steel sheet was superior to those of the S35C steel sheet, since a higher carbon content in steel sheet led to a higher hardness. The experimental results were discussed by the evaluation of the results obtained from tensile test, hardness test, micro-structure and V bending test.

  • PDF

Effect of damage on permeability and hygro-thermal behaviour of HPCs at elevated temperatures: Part 1. Experimental results

  • Gawin, D.;Alonso, C.;Andrade, C.;Majorana, C.E.;Pesavento, F.
    • Computers and Concrete
    • /
    • 제2권3호
    • /
    • pp.189-202
    • /
    • 2005
  • This paper presents an analysis of some experimental results concerning micro-structural tests, permeability measurements and strain-stress tests of four types of High-Performance Concrete, exposed to elevated temperatures (up to $700^{\circ}C$). These experimental results, obtained within the "HITECO" research programme are discussed and interpreted in the context of a recently developed mathematical model of hygro-thermal behaviour and degradation of concrete at high temperature, which is briefly presented in the Part 2 paper (Gawin, et al. 2005). Correlations between concrete permeability and porosity micro-structure, as well as between damage and cracks' volume, are found. An approximate decomposition of the thermally induced material damage into two parts, a chemical one related to cement dehydration process, and a thermal one due to micro-cracks' development caused by thermal strains at micro- and meso-scale, is performed. Constitutive relationships describing influence of temperature and material damage upon its intrinsic permeability at high temperature for 4 types of HPC are deduced. In the Part II of this paper (Gawin, et al. 2005) effect of two different damage-permeability coupling formulations on the results of computer simulations concerning hygro-thermo-mechanical performance of concrete wall during standard fire, is numerically analysed.

Mesoscopic numerical analysis of reinforced concrete beams using a modified micro truss model

  • Nagarajan, Praveen;Jayadeep, U.B.;Madhavan Pillai, T.M.
    • Interaction and multiscale mechanics
    • /
    • 제3권1호
    • /
    • pp.23-37
    • /
    • 2010
  • Concrete is a heterogeneous material consisting of coarse aggregate, mortar matrix and interfacial zones at the meso level. Though studies have been done to interpret the fracture process in concrete using meso level models, not much work has been done for simulating the macroscopic behaviour of reinforced concrete structures using the meso level models. This paper presents a procedure for the mesoscopic analysis of reinforced concrete beams using a modified micro truss model. The micro truss model is derived based on the framework method and uses the lattice meshes for representing the coarse aggregate (CA), mortar matrix, interfacial zones and reinforcement bars. A simple procedure for generating a random aggregate structure is developed using the constitutive model at meso level. The study reveals the potential of the mesoscopic numerical simulation using a modified micro truss model to predict the nonlinear response of reinforced concrete structures. The modified micro truss model correctly predicts the load-deflection behaviour, crack pattern and ultimate load of reinforced concrete beams failing under different failure modes.

Probabilistic analysis of micro-film buckling with parametric uncertainty

  • Ying, Zuguang;Wang, Yong;Zhu, Zefei
    • Structural Engineering and Mechanics
    • /
    • 제50권5호
    • /
    • pp.697-708
    • /
    • 2014
  • The intentional buckling design of micro-films has various potential applications in engineering. The buckling amplitude and critical strain of micro-films are the crucial parameters for the buckling design. In the reported studies, the film parameters were regarded as deterministic. However, the geometrical and physical parameters uncertainty of micro-films due to manufacturing becomes prominent and needs to be considered. In the present paper, the probabilistic nonlinear buckling analysis of micro-films with uncertain parameters is proposed for design accuracy and reliability. The nonlinear differential equation and its asymptotic solution for the buckling micro-film with nominal parameters are firstly established. The mean values, standard deviations and variation coefficients of the buckling amplitude and critical strain are calculated by using the probability densities of uncertain parameters such as the film span length, thickness, elastic modulus and compressive force, to reveal the effects of the film parameter uncertainty on the buckling deformation. The results obtained illustrate the probabilistic relation between buckling deformation and uncertain parameters, and are useful for accurate and reliable buckling design in terms of probability.

Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach

  • Rajabi, Javad;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • 제23권5호
    • /
    • pp.361-376
    • /
    • 2019
  • In this research, bending analysis of a micro sandwich skew plate with isotropic core and piezoelectric composite face sheets reinforced by carbon nanotube on the elastic foundations are studied. The classical plate theory (CPT) are used to model micro sandwich skew plate and to apply size dependent effects based on modified strain gradient theory. Eshelby-Mori-Tanaka approach is considered for the effective mechanical properties of the nanocomposite face sheets. The governing equations of equilibrium are derived using minimum principle of total potential energy and then solved by extended Kantorovich method (EKM). The effects of width to thickness ratio and length to width of the sandwich plate, core-to-face sheet thickness ratio, the material length scale parameters, volume fraction of CNT, the angle of skew plate, different boundary conditions and types of cores on the deflection of micro sandwich skew plate are investigated. One of the most important results is the reduction of the deflection by increasing the angle of the micro sandwich skew plate and decreasing the deflection by decreasing the thickness of the structural core. The results of this research can be used in modern construction in the form of reinforced slabs or stiffened plates and also used in construction of bridges, the wing of airplane.

Study of educational management on performance of scholar in nano/micro-level composite

  • Chunhong Zhang;Yun Liu;Yong Zhang;Artin Ketabdar;H.B. Xiang
    • Advances in nano research
    • /
    • 제16권6호
    • /
    • pp.615-622
    • /
    • 2024
  • This study investigates the impact of educational management on the performance of scholars in the field of nano/micro-level composites. The objective is to understand how effective management strategies can enhance the academic achievements and research outcomes of students specializing in this advanced area of materials science. Through a combination of qualitative and quantitative methodologies, data was collected from various educational institutions renowned for their programs in nano/micro-level composites. Our results indicate that tailored educational management practices significantly improve student performance. Key strategies identified include personalized mentorship programs, interdisciplinary collaboration opportunities, and access to state-of-the-art laboratory facilities. Institutions that implemented these practices observed a marked increase in the quality and quantity of research outputs, higher student satisfaction rates, and improved post-graduation employment prospects in relevant industries. Furthermore, the study highlights the importance of continuous professional development for educators to stay abreast of the latest advancements in nano/micro-level composites. By fostering an environment of innovation and support, educational management can play a crucial role in shaping the next generation of researchers and professionals in this cutting-edge field. These findings underscore the necessity of strategic educational management in optimizing the academic and professional trajectories of scholars in nano/micro-level composites, ultimately contributing to advancements in technology and industry applications.

Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory

  • Mohammadimehr, Mehdi;Mehrabi, Mojtaba;Hadizadeh, Hasan;Hadizadeh, Hossein
    • Steel and Composite Structures
    • /
    • 제26권4호
    • /
    • pp.513-531
    • /
    • 2018
  • In this article, static, buckling and free vibration analyses of a sinusoidal micro composite beam reinforced by single-walled carbon nanotubes (SWCNTs) with considering temperature-dependent material properties embedded in an elastic medium in the presence of magnetic field under transverse uniform load are presented. This system is used at micro or sub micro scales to enhance the stiffness of micro composite structures such as bar, beam, plate and shell. In the present work, the size dependent effects based on surface stress effect and modified strain gradient theory (MSGT) are considered. The generalized rule of mixture is employed to predict temperature-dependent mechanical and thermal properties of micro composite beam. Then, the governing equations of motions are derived using Hamilton's principle and energy method. Numerical results are presented to investigate the influences of material length scale parameters, elastic foundation, composite fiber angle, magnetic intensity, temperature changes and carbon nanotubes volume fraction on the bending, buckling and free vibration behaviors of micro composite beam. There is a good agreement between the obtained results by this research and the literature results. The obtained results of this study demonstrate that the magnetic intensity, temperature changes, and two parameters elastic foundations have important effects on micro composite stiffness, while the magnetic field has greater effects on the bending, buckling and free vibration responses of micro composite beams. Moreover, it is shown that the effects of surface layers are important, and observed that the changes of carbon nanotubes volume fraction, beam length-to-thickness ratio and material length scale parameter have noticeable effects on the maximum deflection, critical buckling load and natural frequencies of micro composite beams.

Ion Implantation으로 Ca를 첨가한 단결정 $Al_2$O$_3$의 Crck-Like Pore의 Healing 거동-H. Hexagonal Ligaments and Type of Healing (Effect of Ca Implantation on the Sintering and Crack Healing Behavior of High Purity $Al_2$O$_3$ Using Micro-Lithographic Technique -II. Hexagonal Ligaments and Type of Healing)

  • 김배연
    • 한국세라믹학회지
    • /
    • 제36권8호
    • /
    • pp.813-819
    • /
    • 1999
  • Ion implantation, photo-lithography, Ar ion milling과 hot press 법을 이용한 micro-fabrication techrique을 사용하여 고순도 알루미나 단결정인 사파이어의 내부에, 조절된 Ca의 첨가량을 갖고 있는, crack과 비슷한 형태의 기공들을 형성시켰다. 이 bi-cryslal을 각각의 온도에서 열처리하여 Ca 이온이 고온에서 알루미나의 morphology와 hcaling에 미치는 영향을 관찰하였다. 열처리 온도가 올라감에 따라서 crack-like pore의 내부에 hcxagonal bridging ligaments가 생성되었는데, 열처리 온도와 Ca의 첨가량이 증가할수록 크기가 커지는 것을 관찰할 수 있었고, 생성된 hexagonal bndgmg ligaments는 열처리가 진행됨에 따라 서서히 커지면서 모서리가 둥글어지는 현상을 관찰할 수 있었다. Bicrystal 내부에 형성된 crack-like pore는 열처리가 진행되면서 edge regression. ligamcnt growth 및 flow의 3가지의 특징적인 형태로 진행되었다. 이때 edge regression은 상대적으로 저온에서부터 전체 crack-like pore에서 서서히 일어나기 시작하였으며, ligament growth는 일부 crack-like pore에서 진행되있으며, 대단히 빠른 속도로 crack healing이 진행됨을 추정할 수 있었다. Flow는 $1800^{\circ}C$ 이상의 고온에서 모든 crack-like pore에 걸쳐서 느리게 일어남을 알 수 있었다.

  • PDF

Roughness and micro pit defects on surface of SUS 430 stainless steel strip in cold rolling process

  • Li, Changsheng;Zhu, Tao;Fu, Bo;Li, Youyuan
    • Advances in materials Research
    • /
    • 제4권4호
    • /
    • pp.215-226
    • /
    • 2015
  • Experiment on roughness and micro pit defects of SUS 430 ferrite stainless steel was investigated in laboratory. The relation between roughness and glossiness with reduction in height, roll surface roughness, emulsion parameters was analyzed. The surface morphology of micro pit defects was observed by SEM, and the effects of micro pit defects on rolling reduction, roll surface roughness, emulsion parameters, lubrication oil in deformation zone and work roll diameter were discussed. With the increasing of reduction ratio strip surface roughness Ra(s), Rp(s) and Rv(s) were decreasing along rolling and width direction, the drop value in rolling direction was faster than that in width direction. The roughness and glossiness were obtained under emulsion concentration 3% and 6%, temperature $55^{\circ}C$ and $63^{\circ}C$, roll surface roughness $Ra(r)=0.5{\mu}m$, $Ra(r)=0.7{\mu}m$ and $Ra(r)=1.0{\mu}m$. The glossiness was declined rapidly when the micro defects ratio was above 23%. With the pass number increasing, the micro pit defects were reduced, uneven peak was decreased and gently along rolling direction. The micro pit defects were increased with the roll surface roughness increase. The defects ratio was declined with larger gradient at pass number 1 to 3, but gentle slope at pass number 4 to 5. When work roll diameter was small, bite angle was increasing, lubrication oil in micro pit of deformation zone was decreased, micro defects were decreased, and glossiness value on the surface of strip was increased.

칫솔질이 IPS e.max Press 도재의 외부 stain에 미치는 영향 (Effect on the Externally Stained IPS e.max Press Porcelain Due to Tooth Brushing)

  • 박찬;이경제;김희중
    • 구강회복응용과학지
    • /
    • 제28권2호
    • /
    • pp.213-221
    • /
    • 2012
  • 장기적인 칫솔질시 외부 stain 처리된 IPS e.max Press 도재의 색의 변화를 분광측색장치(SpectroShade$^{TM}$)를 이용하여 측정하고 비교함으로써 외부 stain의 색 안정성을 평가해 보고자 한다. IPS e.max Press LT ingots shade a1(Ivoclar Co.,Liechtenstein)를 사용하여 블록 형태의 시편을 제작하였으며 Orange, A, B, C, D shade로 외부 stain 처리 하였다. 칫솔질 기계를 이용하여 1년(11,000회), 2년(22,000회), 4년(44,000회), 6년(66,000회), 8년(88,000회) 치의 칫솔질 운동을 수평적으로 시행하였다. SpectroShade$^{tm}$ MICRO(MHT, Italy)를 이용하여 색조 변화를 측정하였다. 1년치(11,000회)의 칫솔질 연마 후 Orange shade에서 다른 4개의 shade보다 더 크게 색 차이가 나타났다. 그 후 칫솔질 횟수가 증가하여도, 외부 stain의 shade에 따른 색 차이의 변화는 통계적으로 유의성이 없었다. 칫솔질의 횟수의 증가에 따른 색 차이의 변화량은 일정한 증가나 감소의 경향을 보이지 않고 불규칙하였으며 통계학적으로 유의한 차이가 발견되지 않았다. 칫솔질이 IPS e.max Press 도재의 외부 stain의 변화에 크게 영향을 미치지 않으며 임상적으로도 외부 stain의 색 안정성이 인정된다고 생각된다. 추후 외부 stain에 영향을 미칠 수 있는 다른 요인들에 대한 연구도 필요하리라 사료된다.