• Title/Summary/Keyword: micro plasma

Search Result 504, Processing Time 0.04 seconds

Effect of dilution on micro hardness of Ni-Cr-B-Si alloy hardfaced on austenitic stainless steel plate for sodium-cooled fast reactor applications

  • Balaguru, S.;Murali, Vela;Chellapandi, P.;Gupta, Manoj
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.589-596
    • /
    • 2020
  • Many components in the assembly section of Sodium-cooled Fast Reactor are made of good corrosionresistant 316 LN Stainless Steel material. To avoid self-welding of the components with the coolant sodium at elevated temperature, hardfacing is inevitable. Ni-based colmonoy-5 is used for hardfacing due to its lower dose rate by Plasma Transferred Arc process due to its low dilution. Since Ni-Cr-B-Si alloy becomes very fluidic while depositing, the major height of the weld overlay rests inside the groove. Hardfacing is also done over the plain surface where grooving is not possible. Therefore, grooved and ungrooved hardfaced specimens were prepared at different travel speeds. Fe content at every 100 ㎛ of the weld overlay was studied by Energy Dispersive Spectroscopy and also the micro hardness was determined at those locations. A correlation between iron dilution from the base metal and the micro hardness was established. Therefore, if the Fe content of the weld overlay is known, the hardness at that location can be obtained using the correlation and vice-versa. A new correlation between micro hardness and dilution coefficient is obtained at different locations. A comparative study between those specimens is carried out to recommend the optimum travel speed for lower dilution.

Chair-side surface treatment method for inducing hydrophilicity in titanium dental implant (치과용 티타늄 임플란트의 골융합 증진을 위한 체어사이드 친수성 표면처리방법)

  • Lee, Jung-Hwan;Jun, Soo-Kyung;Lee, Hae-Hyoung
    • The Journal of the Korean dental association
    • /
    • v.54 no.12
    • /
    • pp.985-995
    • /
    • 2016
  • Titanium (Ti) has been widely used for dental implant due to great biocompatibility and bonding ability against natural alveolar bone. A lot of titanium surface modification has been introduced in dentistry and, among them, methods to introduce micro/nano-roughened surface were considered as clinically approved strategy for accelerating osseointegration of Ti dental implant. To have synergetic effect with topography oriented favors in cell attachment, chair-side surface treatment with reproducibility of micro/nano-topography is introduced as next strategy to further enhance cellular functionalities. Extensive research has been investigated to study the potential of micro/nano-topography preserved chair-side surface treatment for Ti dental implant. This review will discuss ultraviolet, low level of laser therapy and non-thermal atmospheric pressure plasma on Ti dental implant with micro/nano-topography as next generation of surface treatment due to its abilities to induce super-hydrophilicity or biofunctionality without change of topographical cues.

  • PDF

Characteristics of Al Doped ZnO Thin Film by Modulated Pulsed Power Magnetron Sputtering

  • Yang, Won-Gyun;Ju, Jeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.430-430
    • /
    • 2012
  • Modulated pulsed power (MPP) 스퍼터링은 펄스 전압 shape, amplitude, duration의 modulation을 통해 증착율 손실을 극복하는 고출력 펄스 마그네트론 스퍼터링의 한 종류이다. Micro second 범위에서 on/off 시간을 다중 세트 형태로 자유롭게 프로그램 할 수 있어서 아킹 없이 고전류 영역의 마그네트론 동작을 할 수 있으므로, 고주파 유도 결합 플라즈마원이나 마이크로웨이브 투입 등의 부가적인 플라즈마 없이도 스퍼터링 재료의 이온화 정도를 획기적으로 높일 수 있는 장점을 가지고 있다. 본 연구에서는 $2{\times}1{\times}0.2$의 sputtering system에서 기판 캐리어를 이용해서 $400{\times}400mm$ 기판을 $272{\times}500mm$ 크기의 AZO target (Al 2 wt%)이 설치되어 있는 moving magnet cathode (MMC)을 이용하여 MPP로 증착했다. 두 종류의 micro pulse set을 하나의 macro pulse에 사용함으로서 weakly ionized plasma와 strongly ionized plasma를 만들 수 있다. 다양한 micro pulse set을 이용하여 평균 전력 2 kW에서 peak 전력을 4 kW에서 45 kW까지 상승 시킬 수 있으며, 이 때 타겟-기판 거리 80 mm에서 이온전류밀도는 $5mA/cm^2$에서 $20mA/cm^2$까지 상승했다. MPP는 같은 평균 전력에서 repetition frequency가 증가할 때, 증착 속도가 증가했으며, 같은 repetition frequency에서 macro pulse length가 증가할 때도, 증착 속도가 증가했다. 최적화된 marco, micro pulse set에서 증착 속도는 평균 전력 2 kW에서 110 nm/min이었고, 700 nm의 박막에서 비저항은 $1-2{\times}10^{-3}ohm{\cdot}cm$였다. 표면거칠기 Rrms는 약 3 nm였고, 400-700 nm 영역의 평균 투과도는 72-76%였다.

  • PDF

Circulating Plasma and Exosomal microRNAs as Indicators of Drug-Induced Organ Injury in Rodent Models

  • Cho, Young-Eun;Kim, Sang-Hyun;Lee, Byung-Heon;Baek, Moon-Chang
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.367-373
    • /
    • 2017
  • This study was performed to evaluate whether microRNAs (miRNAs) in circulating exosomes may serve as biomarkers of drug-induced liver, kidney, or muscle-injury. Quantitative PCR analyses were performed to measure the amounts of liver-specific miRNAs (miR-122, miR-192, and miR-155), kidney-specific miR-146a, or muscle-specific miR-206 in plasma and exosomes from mice treated with liver, kidney or muscle toxicants. The levels of liver-specific miRNAs in circulating plasma and exosomes were elevated in acetaminophen-induced liver injury and returned to basal levels by treatment with antioxidant N-acetyl-cysteine. Circulating miR-146a and miR-206 were increased in cisplatin-induced nephrotoxicity and bupivacaine-induced myotoxicity, respectively. Taken together, these results indicate that circulating plasma and exosomal miRNAs can be used as potential biomarkers specific for drug-induced liver, kidney or muscle injury.

Improvement of Proton Beam Quality from the High-intensity Short Pulse Laser Interaction with a Micro-structured Target

  • Seo, Ju-Tae;Yoo, Seung-Hoon;Pae, Ki-Hong;Hahn, Sang-June
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.22-27
    • /
    • 2009
  • Target design study to improve the quality of an accelerated proton beam from the interaction of a high-intensity short pulse laser with an overdense plasma slab has been accomplished by using a two-dimensional, fully electromagnetic and relativistic particle-in-cell (PIC) simulation. The target consists of a thin core part and a thick peripheral part of equivalent plasma densities, while the ratio of the radius of the core part to the laser spot size, and the position of the peripheral part relative to the fixed core part were varied. The positive effects of this core-peripheral target structure could be expected from the knowledge of the typical target normal sheath acceleration (TNSA) mechanism in a laser-plasma interaction, and were apparently evidenced from the comparison with the case of a conventional simple planar target and the case of the transversal size reduction of the simple planar target. Improvements of the beam qualities including the collimation, the forward directionality, and the beam divergence were verified by detailed analysis of relativistic momentum, angular directionality, and the spatial density map of the accelerated protons.

Fiber network with superhydrophilic Si-DLC coating

  • Kim, Seong-Jin;Mun, Myeong-Un;Lee, Gwang-Ryeol;Kim, Ho-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.363-363
    • /
    • 2010
  • The high capillarity of a plastic fiber network having superhydrophilic Si-DLC coating is studied. Although the superhydrophilic surface maximize wetting ability on the flat surface, there remains a requirement for the more wettable surface for various applications such as air-filters or liquid-filters. In this research, the PET non-woven fabric surface was realized by superhydrophilic coating. PTE non-woven fabric network was chosen due to its micro-pore structure, cheap price, and productivity. Superhydrophobic fiber network was prepared with a coating of oxgyen plasma treated Si-DLC films using plasma-enhanced chemical vapor deposition (PECVD). We first fabricated superhydrophilic fabric structure by using a polyethylene terephthalate (PET) non-woven fabric (NWF) coated with a nanostructured films of the Si-incorporated diamond-like carbon (Si-DLC) followed by the plasma dry etching with oxygen. The Si-DLC with oxygen plasma etching becomes a superhydrophilic and the Si-DLC coating have several advantages of easy coating procedure at room temperature, strong mechanical performance, and long-lasting property in superhydrophilicity. It was found that the superhydrophobic fiber network shows better wicking ability through micro-pores and enables water to have much faster spreading speed than merely superhydrophilic surface. Here, capillarity on superhydrophilic fabric structure is investigated from the spreading pattern of water flowing on the vertical surface in a gravitational field. As water flows on vertical flat solid surface always fall down in gravitational direction (i.e. gravity dominant flow), while water flows on vertical superhydrophilic fabric surface showed the capillary dominant spreading.

  • PDF

Plasma Etching and Polymerization of Carbon Fiber (플라즈마 에칭과 중합에 의한 탄소섬유의 표면 개질)

  • H. M. Kang;Kim, N. I.;T. H. Yoon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.143-146
    • /
    • 2002
  • Unsized AS-4 carbon fibers were etched by RF plasma and then coated via plasma polymerization in order to enhance adhesion to vinyl ester resin. The gases utilized for the plasma etching were Ar, $N_2 and O_2$, while the monomers used for the plasma polymerization coating were acetylene, butadiene and acrylonitrile. The conditions for the plasma etching and the plasma polymerization were optimized by measuring interfacial adhesion with vinyl ester resin via micro-droplet tests. Among the treatment conditions, the combination of Ar plasma etching and acetylene plasma polymerization provided greatly improved interfacial shear strength (IFSS) of 69MPa compared to 43MPa with as-received carbon fiber. Based on the SEM analysis of failure surface and load-displacement curve, it was assume that the failure might be occurred at the carbon fiber and plasma polymer coating. The plasma etched and plasma polymer coated carbon fibers were subjected to analysis with SEM, XPS, FT-IR or Alpha-Step, and dynamic contact angles and tensile strengths were also evaluated. Plasma polymer coatings did not change tensile strength and surface roughness of fibers, but decreased water contact angle except butadiene plasma polymer coating, possibly owing to the functional groups introduced, as evidenced by FT-IR and XPS.

  • PDF

The Effect of Nitrogen Plasma Treatment on Tribological Behaviors of Plasma-sprayed Zirconia Coatings

  • Lim, Dae-Soon;Shin, Jong-Han;Lee, Jung-Yeob;Cho, Chang-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.7
    • /
    • pp.602-607
    • /
    • 2001
  • Zirconia powder containing 3 mol% yttria (3Y-PSZ) was casted on the cast iron substrate by plasma spraying method. Coated specimens were then heat treated at 500$\^{C}$ in nitrogen plasma. Wear tests were performed on nitrogen heat treated and non heat treated samples at temperatures from 25$\^{C}$ to 600$\^{C}$. Wear results showed that the friction coefficient and the wear loss of both the treated and the non-treated samples showed maximum value at 400$\^{C}$. These results were explained by low temperature thermal degradation due to the monoclinic transformation. Nitrogen plasma treatment significantly improved the tribological performance. The effect of nitrogen heat treatment on tribological behavior was explained by the increased micro-hardness and decreased monoclinic faction.

  • PDF

Properties of Silicone-coated Fabric for Membrane Treated by Oxygen Low Temperature Plasma (산소 저온 플라즈마 처리에 의한 실리콘코팅 막 구조원단의 접착특성)

  • Park, Beob;Koo, Kang
    • Textile Coloration and Finishing
    • /
    • v.23 no.3
    • /
    • pp.195-200
    • /
    • 2011
  • Silicone-coated fabric were treated by oxygen low temperature plasma to improve the adhesion. The surface of silicone-coated fabric was modified with gaseous plasma of several discharge power in the presence of oxygen gas at 1Torr pressure. Oxygen plasma treatment introduces oxygen-containing functional groups and micro-pittings on the silicone-coated fabric surface. The treated fabrics with oxygen low temperature plasma were measured by contact angle analyzer and XPS(X-ray photoelectron spectroscopy), and interfacial adhesion was measured by T-peel test. The surface of fabric was investigated by SEM photographs. The chemical and physical modification of the surface wettabillity by plasma treatment can increase the adhesion.

Study of Transient Response in Non-uniform Plasma Layer with Optically-Controlled Microwave Pulses (광-마이크로파 기반 유도플라즈마의 과도응답 특성에 관한 연구)

  • Wang, Xue;Choi, Yue-Soon;Park, Jong-Goo;Kim, Yong-K.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1174-1179
    • /
    • 2009
  • In this paper we develop the characteristic of density on non-uniform plasma in different layer of the semiconductor with optically controlled microwave pulses. The transient response of the microwave pulses in different plasma layer has been evaluated by calculating the variation of the reflection function of dielectric microstrip lines. The lines has used under open-ended termination containing optically induced plasma region, which has illuminated a laser source. The characteristics impedances resulting from the presence of plasma are evaluated by the transmission line model. The analyzes the variation of transient response in a 0.01cm layer near the surface for frequency range from 1GHz to 128GHz. The diffusion length LD is larger than compared to the absorption depth $l/_{\alpha}l$. The variation of characteristic response in plasma layer with microwave pulses which has in deferentially localized has been evaluated analytically.