• Title/Summary/Keyword: micro optic device

Search Result 14, Processing Time 0.021 seconds

Fabrication and analysis of optical micro-pyramid array-patterns (광학 마이크로 피라미드 패턴의 제조 및 광특성 해석)

  • Lee, Je-Ryung;Jeon, Eun-Chae;Je, Tae-Jin;Woo, SangWon;Choi, Do-Sun;Yoo, Yeong-Eun;Kim, Hwi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.7-12
    • /
    • 2014
  • A transparent poly methyl methacrylate (PMMA) optical micro-pyramid array-pattern is designed and fabricated using an injection modeling technique. The device's optical characteristics are tested and analyzed theoretically. In the optical pattern generated using the fabricated PMMA pattern, the components, due to not only refraction but also diffraction, are observed simultaneously. Wave optic modeling and analysis reveals that the energy ratio between the diffraction and refraction in the optical pattern are dependent on the critical dimension of the optical pattern such that the refraction and diffraction tend to be directly and inversely proportional to the pattern dimension, respectively.

Development of an Inchworm type Actuator for an Ultra Precise Linear Stage (초정밀 리니어 스테이지용 인치웜 타입 구동장치 개발)

  • Moon, Chan-Woo;Lee, Sung-Ho;Chung, Jung-Kee;Lee, Jong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.309-312
    • /
    • 2002
  • Precision stage is essential device for semiconductor equipments, fiber optic assembly systems and micro machines. In this paper, we develop a piezo-electric inchworm type actuator for long stroke ultra precision linear stages, and implement a controller to interface with commercial motion controllers. It provides fast implementation of precise position control system substituting for rotary motor. In the future, using a laser interferometer as a position sensor, we plan to implement a nano meter precision stage.

  • PDF

Stability-Enhanced Liquid Crystal Mode for Flexible Display Applications

  • Jung, Jong-Wook;Jang, Se-Jin;Lee, You-Jin;Kim, Hak-Rin;Jin, Min-Young;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.687-691
    • /
    • 2005
  • We demonstrated stability-enhanced liquid crystal (LC) displays using pixel-iosolated LC mode in which LC molecules are isolated in pixel by horizontal polymer layer and vertical polymer wall. The device shows good electro-optic properties with external pressure and bending due to the polymer structures. The polymer wall acts as supporting structure from mechanical pressure and maintains the cell gap from bending. Moreover, the polymer layer acts as adhesive for tight attachment of two substrates. We presented various methods to produce the polymer structures by using anisotropic phase separation from LC and polymer composites or patterned micro-structures.

  • PDF

Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing (광공진 현상을 이용한 입체 영상센서 및 신호처리 기법)

  • Park, Yong-Hwa;You, Jang-Woo;Park, Chang-Young;Yoon, Heesun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF