• Title/Summary/Keyword: micro optic device

Search Result 14, Processing Time 0.031 seconds

Fiber Optic Engine for Full Color Mobile Display

  • Arabi, H.;An, S.;Oh, K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.400-401
    • /
    • 2009
  • In this paper we report a micro projector including of RGB sources, a $3{\times}1$ Fiber Optic Color Synthesizer (FOCS), and a two dimensional micro mechanical scanning mirror. We further report a modifier micro collimator which can enhance the resolution of the screened image.

  • PDF

The characteristics and optimal modeling of input source for optical device using thin film filter in optical telecommunication network (광통신용 박막필터형 광소자 분석을 위한 최적화 모델링과 특성분석)

  • 김명진;이승걸
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.306-311
    • /
    • 2003
  • In this paper, we modeled the incident beam in order to analyze and evaluate the optical thin film device for wavelength division multiplexing in optical telecommunication network. As applied ray tracing method to the optical path, we were compared the accuracy of coupling efficiency simulated by two modeling methods. In the results of sinulation, ceil modeling method was preferred to annual modeling method in micro-optic device because of accuracy for coupling efficiency and Gaussian intensity distribution. In the results of optimal simulation for optical device using thin film filter, the distance (d1) between optical fiber and GRIN lens, the distance (d2) between GRIN lens and thin film filter and the coupling efficiency were 0.24 mm, 0.25 mm and -0.11 ㏈ respectively. As d2 was displaced at 0.25 mm and d1 was varied in order to evaluate the optimal value, d1 and maximum coupling efficiency were 0.24 mm and -0.35㏈, respectively. Then the results of experiment were corresponded to that of optimal simulation by cell modeling and it was possible to analyze the performance for optical device using thin film filter by the simulation.

Thermo-Optically Tunable Filter Using Evanescent Field Coupling Between Side-Polished Polarization Maintaining Fiber and Polymer Planar Waveguide (측면 연마된 편광유지 광섬유와 폴리머 평면도파로 사이의 소산장 결합을 이용한 열 광학 가변 필터)

  • 윤대성;김광택
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.2
    • /
    • pp.33-38
    • /
    • 2004
  • We have demonstrated a tunable Inter based on an asymmetric directional coupler made of a side-polished polarization maintaining fiber coupled with a polymer planar waveguide. The thermo-optic effects of the polymer planar waveguide induced by a micro-strip heater placed on the top layer of the device leads to shift of resonance wavelength of the coupler. The fabricated device exhibited wide tunable range exceeding 230 nm with 720 ㎽ of applied electrical power.

New Inchworm type Actuator with I/Q heterodyne Interferometer Feedback for a Long Stroke Precision Stage

  • Moon Chanwoo;Lee Sungho;Chung J.K
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.34-39
    • /
    • 2005
  • The precision stage is an essential device for optic fiber assembly systems, micro machines and semiconductor equipments. A new piezoelectric inchworm type actuator is proposed to implement an actuator-integrated long-stroke linear stage. An in-and-quadrature phase (I/Q) heterodyne interferometer is developed as a feedback sensor of a servo system, and a synchronized counting method is proposed. The proposed measurement system can measure the accurate position of fast moving object with robustness to external sensing noise from actuator vibration. The developed servo stage will be applied to optic fiber device assembly system.

An Optical Micro-Magnetic Device: Magnetic-Spatial Light Modulator

  • Park, Jae-Hyuk;Inoue, M.;Cho, Jae-Kyeong;Nishimura, K.;Uchida, H.
    • Journal of Magnetics
    • /
    • v.8 no.1
    • /
    • pp.50-59
    • /
    • 2003
  • Spatial light modulators (SLMs) are centrally important devices in volumetric recording, data Processing, Pattern recognition and other optical systems. Various types of reusable SLMs with two-dimensional pixel arrays have been intensively developed. Of these, magneto-optic spatial light modulators (MOSLMs) have advantages of high switching speed, robustness, nonvolatility, and radioactive resistance. In this article, we review recent development work on MOSLMs, mainly in relation to our own studies.

Speed Property Evaluation of an Inchworm Type Linear Stage (인치웜 구조를 갖는 선형 스테이지의 속도 특성연구)

  • Moon, Chan-Woo
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.178-182
    • /
    • 2007
  • Precision stages are essential device for micro machines, fiber optic assembly systems, and biology instruments. In this paper, a precision inchworm type actuator for a linear stage is proposed and evaluated. An analytic method to design an inchworm type motor is proposed. Developed actuator provides fast motion compared with a commercial inchworm actuator, and can be used as an actuator for a stage in substitution for a conventional rotary actuator.

  • PDF

Stability-Enhanced Liquid Crystal Mode for Flexible Display Applications

  • Jung, Jong-Wook;Jang, Se-Jin;Lee, You-Jin;Kim, Hak-Rin;Jin, Min-Young;Kim, Jae-Hoon
    • Journal of Information Display
    • /
    • v.6 no.2
    • /
    • pp.1-6
    • /
    • 2005
  • We demonstrated stability-enhanced liquid crystal (LC) displays using pixel-isolated LC mode in which LC molecules are isolated in pixel by horizontal polymer layer and vertical polymer wall. The device shows good electro-optic properties against external point or bending pressure due to the polymer structures. The polymer wall acts as supporting structure from mechanical pressure and prevents the cell gap from bending. Moreover, the polymer layer acts as an adhesive to ensure a tight attachment of the two substrates. We present herein various methods for producing polymer structures by using an anisotropic phase separation from LC and polymer composites or patterned micro-structures for stable flexible liquid crystal displays.

Locked Super Homeotropic (LSH) liquid crystal device for large size LCD (대면적의 LCD를 위한 갇혀진 Locked Super Homeotropic (LSH) 액정 디바이스)

  • Park, S.H.;Song, I.S.;Kim, W.C.;Oh, S.T.;Lee, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.146-149
    • /
    • 2004
  • We have studied a liquid crystal (LC) mode (named locked super homeotropic (LSH)) in which the LCs aligned homeotropically are locked by surrounding walls such as cubic, hexagonal and cylinder. In the device, the vertically aligned LCs tilt down symmetrically around the center of the cell when a voltage is applied and thus it exhibits wide viewing angle. The structure of this LSH mode is suitable for large-sized display panels. since the LCs are locked in micro domains the LCs do not flow to the bottom of the panel by gravity. This mode is applicable to achieve high performance TFT-LCD TV because of high performance characteristics such as high contrast, high brightness, wide-viewing angle.

  • PDF

Development of Temperature Compensated Micro Cone by using Fiber Optic Sensor (광섬유를 이용한 온도 보상형 마이크로콘의 개발)

  • Kim, Raehyun;Lee, Woojin;Yoon, Hyung-Koo;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4C
    • /
    • pp.163-174
    • /
    • 2009
  • Mechanical device using the load cell or strain gage sensor can be influenced by tempearute changes because temperature change can cause a shift in the load cell or straing gage output at zero loading. In this paper, micro cone penetrometers with 1~7mm in diameter, are developed by using an optical fiber sensor (FBG: Fiber Bragg Grating) to compensate the continous temperature change during cone penetration test. Note the temperature compensated method using optical fiber sensor which has hair-size in diameter, and is not affected by environmental conditions because the measured data is the wavelength shifting of the light instead of the intensity of the electric voltage. Temperature effect test shows that the output voltage of strain gage changes and increases with an increase in the temperature. A developed FBG cone penetrometer, however, achieves excellent temperature compensation during penetration, and produces continuous change of underground temperature. In addition, the temperature compensated FBG cone shows the excellent sensitivity and detects the interface of the layered soils with higher resolution. This study demonstrates that the fiber optic sensor renders the possibility of the ultra small size cone and the new fiber optic cone may produce more reliable temperature compensated tip resistance.