• Title/Summary/Keyword: micro fracture

Search Result 437, Processing Time 0.029 seconds

Development of Micro Tensile Tester for High Functional Materials (고기능 소재용 마이크로 인장시험기 개발)

  • 최현석;한창수;최태훈;이낙규;임성주;박훈재;김승수;나경환
    • Transactions of Materials Processing
    • /
    • v.11 no.7
    • /
    • pp.561-568
    • /
    • 2002
  • Micro tensile test is the most direct and convenient method to measure material properties such as Young's modulus and fracture strength. It, however, needs more accurate measurement system, mote stable and repetitive alignment and more sensitive gripping than conventional tensile test. Many researchers have put their effort on overcoming these difficulties for tile development of micro tensile tester, fabricating micro specimens of functional materials and measuring their properties. This paper will review the related vigorous researches over the world in the recent decade and explain how to apply them to a design of the fester which is under our own development.

Effects of ceramic fillers on fracture resistance of barrier ribs of PDP

  • Baek, Se-Kyung;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.552-554
    • /
    • 2004
  • Barrier ribs of plasma display panel (PDP) are glass matrix composite reinforced with alumina particles. Mechanical properties of the ribs are very crucial for the improvement in reliability of the panel as the ribs might fracture during transportation and service. In this study, therefore, the effects of filler type and content on the mechanical properties of the ribs were investigated. The fillers used include $Al_2O_3$, $TiO_2$, $ZrO_2$ and fused silica. The content of the filler was changed from 0 to 40 vol.%. The mechanical properties of the ribs measured were hardness, Young's modulus, fracture toughness, and 3-point bending modulus. The fracture toughness evaluated by micro-Vicker's indentation of the composites, in general, was measured to increase with the content of the filler until the sintered density does not decrease significantly. The improvement, however, was dependent on the type of filler employed.

  • PDF

Fractographic Analysis Method of Fatigue Fracture Surface under Program and Random Loading for Aluminum Alloy (알루미늄 합금의 랜덤하중 하에서 발생한 피로파면 해석 방법)

  • 김상태;최성종;양현태;이희원
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2055-2060
    • /
    • 2003
  • Striation is a typical pattern observed on the fatigue fracture surface and the spacing is known to correspond to a macroscopic fatigue crack growth rate, and many models for the predict in the formation of such striation have been proposed. However, these theories and methods can't be applied under random loading spectrum. In this study, the fatigue tests were carried out on aluminum alloy under random loading spectrum. The fatigue fracture surfaces were observed in the scanning electron microscope (SEM) and great quantities of SEM micrographs were synthesized and saved in computer system. The space and morphology of several large-scale striations, which are expected to from at the relatively greater load range in loading block, were observed. The crack length for each loading blocks was decided in consideration of regularity and repetition of those striations. It is shown that the applicability of fractographic methods on the fatigue fracture surface under random loading spectrum.

Study on the impact fracture behavior with the ferrite-martensite dual phase steels (페라이트-마르텐사이트 複合組織鋼의 衝擊破壞擧動)

  • 송삼홍;오택렬
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.19-27
    • /
    • 1988
  • The mechanical properties of Ferrite-Martensite dual phase steels are affected by microstructural factors, such as, martensite volume fractions, grain size of ferrite, hardness ratio of Ferrite-Martensite, connectivity and chemical components etc. Therefore, this study has been made on the influence of Impact fracture behavior which changes the hardness ratio of Ferrite-Martensite by mean of heat treatment of low carbon Mn-Steels. In order to analyze and examine the effect of fracture behavior under impact load, this study investigated the impact strength, the impact loading time, the absorbed energy on the fracture ductility of Ferrite-Martensite dual phase steels, the formation of micro crack and slip, and plastic restraint of martensite on the plastic deformation.

Fracture Characteristics of Flame Thermal Shock in PSZ/NiCrAlY FGM (세라믹(PSZ)/금속(NiCrAlY) 경사기능성 복합재료의 화염 열충격 파괴특성)

  • Song, Jun-Hee;Mun, Sang-Don
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.8
    • /
    • pp.775-779
    • /
    • 2010
  • Functionally graded materials (FGM) of PSZ/NiCrAlY on Inconel substrate were fabricated by detonation gun spraying method. A thick ceramic layer generally has a high thermal barrier effect however, because failure often occurs, the use of an FGM layer gives an advantage in thermal property. During the thermal shock test, micro fracture processes were detected by the AE method. Also, the thermal shock test was performed for NFGM, FGM and the changed FGM in the layered composition profile. It was found through AE testing and the observation of fracture surface that FGM was superior to NFGM in thermal shock properties. The linear or metal-rich type FGM in composition profile had the best resisting property among the FGM. It was found that the controlled composition profile of the graded layers had better thermal properties.

Medical Application of the Nondestructive Ultrasonic Tests: Diagnosis of Micro Bone Fractures using Ultrasonic C Scan Images (비파괴 초음파 검사법의 의학적 활용: 초음파 C 스캔 영상을 이용한 미세 골절의 진단)

  • Choi, Min-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.377-385
    • /
    • 2002
  • Ultrasonic tests employing non-ionizing radiation are preferred in nondestructive examinations since they are safe and simple in use. The same principles of the techniques have been taken as valuable tools in medical area for the diagnoses of diseases, in other words, defects of the human body. The paper overviews the principles of the medical diagnosis based on nondestructive ultrasonic tests, and then evaluates experimentally the clinical potential of C scan images not popular in medicine, for detecting the micro fractures of the cortical bone. In the experiment the micro bone fractures were created on the femurs of porks by loading three point bending forces (2-4kN) with the speed of 1 mm/min. As the extent of the fracture was altered, not only X ray images but also ultrasonic C scan images using a focused ultrasonic probe resonated at 25 MHz were obtained. The results showed that ultrasonic C scan images were capable of detecting the micro bone fractures which were not possible to identify by conventional X ray images.

The Effect of Graphite and MoS2 on Endurance and Cutting Performance of Diamond Micro Blades (다이아몬드 마이크로블레이드의 내구성과 절삭성능에 미치는 흑연과 MoS2의 첨가효과)

  • Moon, Jong-Chul;Kim, Song-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.335-340
    • /
    • 2008
  • Cutting performance and wear behavior were studied with the diamond micro-blade of Cu/Sn bond materials containing various amount of lubricant materials such as graphite and $MoS_2$. Measurement of instantaneous electric power consumption for cutting glass workpiece at the constant velocity was conducted and proposed as a method to assess cutting efficiency. The energy consumption of micro-blade for glass cutting decreased with the content of graphite and $MoS_2$ while wear amount of blade in volume increased with the amount of lubricant addition during the dicing test. It is because that hardness, flexural strength, and fracture toughness ($K_{IC}$) reduced with the amount of lubricant addition. Blades with $MoS_2$ additive showed higher mechanical properties than those with graphite additives when the same amount of the lubricant additive in wt.% was added. Due to the lower density of graphite than $MoS_2$, higher volume fraction of graphite could result in stronger effect on lowering electric power consumption by reducing the friction between blade and work piece however increasing wear rate due to the reduction in strength and fracture toughness. Adhesive wearing mode of micro blade could be remarkably improved by the addition of graphite as well as $MoS_2$.

Electrochemical Machining Using Tungsten Microelectrode (텅스텐 미세 전극을 이용한 전해 가공)

  • Ryu, Shi-Hyoung;Yu, Jong-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.134-140
    • /
    • 2009
  • The feasibility of electrochemical drilling and milling on stainless steel are investigated using tungsten microelectrode with $10{\mu}m$ in diameter. For the development of environmentally friendly and safe electrochemical process, citric acid solution is used as electrolyte. A few hundred nanoseconds duration pulses are applied between the microelectrode and work material for dissolution localization. Tool fracture by Joule heating, micro welding, capillary phenomenon, tool wandering by the generated bubbles are observed and their effects on micro ECM are discussed. Occasionally, complex textures including micro pitting corrosion marks appeared on the hole inner surface. Metal growth is also observed under the weak electric conditions and it hinders further dissolutions for workpiece penetration. By adjusting appropriate pulse and chemical conditions, micro holes of $37{\mu}m$ in diameter with $100{\mu}m$ in depth and 26Jim in diameter with $50{\mu}m$ in depth are drilled on stainless steel 304. Also, micro grooves with $18{\mu}m$ width and complex micro hand pattern are machined by electrochemical milling.

The Shock and Fracture Analysis of Ship Structure Subject to Underwater Shock Loading (수중충격하중을 받는 선체구조의 충격 및 파손 해석)

  • Kie-Tae Chung;Kyung-Su Kim;Young-Bok Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.118-131
    • /
    • 1995
  • The shock fracture analysis for the structures of navy vessels subject to underwater explosions or of high speed vessels frequently subject to impact loads has been carried out in two steps such as the global or macro analysis and the fine or micro analysis. In the macro analysis, Doubly Asymptotic Approximation(DAA) has been applied. The three main failure modes of structure members subject to strong shock loading are late time fracture mode such as plastic large deformation mainly due to dynamic plastic buckling, and the early time fracture mode such as tensile tearing failure or transverse shear failure. In this paper, the tensile tearing failure mode is numerically analyzed for the micro analysis by calculating the dynamic stress intensity factor $K_I(t)$, which shows the relation between stress wave and crack propagation on the longitudinal stiffener of the model. Especially, in calculating this factor, the numerical caustic method developed from shadow optical method of caustic well known as experimental method is used. The fully submerged vessel is adopted for the macro analysis at first, of which the longitudinal stiffener, subject to early shock pressure time history calculated in macro analysis, is adopted for the micro analysis.

  • PDF