• Title/Summary/Keyword: micro fluid

Search Result 592, Processing Time 0.029 seconds

Numerical Simulation of Blood Cell Motion in a Simple Shear Flow

  • Choi, Choeng-Ryul;Kim, Chang-Nyung;Hong, Tae-Hyub
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1487-1491
    • /
    • 2008
  • Detailed knowledge on the motion of blood cells flowing in micro-channels under simple shear flow and the influence of blood flow is essential to provide a better understanding on the blood rheological properties and blood cell aggregation. The microscopic behavior of red blood cell (RBCs) is numerically investigated using a fluid-structure interaction (FSI) method based on the Arbitrary-Lagrangian-Eulerian (ALE) approach and the dynamic mesh method (smoothing and remeshing) in FLUENT (ANSYS Inc., USA). The employed FSI method could be applied to the motions and deformations of a single blood cell and multiple blood cells, and the primary thrombogenesis caused by platelet aggregation. It is expected that, combined with a sophisticated large-scale computational technique, the simulation method will be useful for understanding the overall properties of blood flow from blood cellular level (microscopic) to the resulting rheological properties of blood as a mass (macroscopic).

  • PDF

A Study on Dynamic Analysis of Nano Fountain Pen (나노 파운틴펜의 동적해석에 관한 연구)

  • Lee, Young-Kwan;Kim, Hun-Mo;Kim, Youn-Jae;Lee, Suk-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.922-929
    • /
    • 2006
  • In this study, flow characteristics of the FPN (Fountain Pen Nano-Lithography) using active membrane pumping are investigated. This FPN has integrated chamber, micro channel, and high capacity reservoir for continuous ink feed. The most important aspect in this probe provided control of fluid injection using active membrane pumping in chamber. The flow rates in channel by capillary force are theoretically analyzed, including the control of mass flow rates by deflection of membrane. The above results are compared with numerical simulations that calculated by commercial code, FLUENT. The velocity of fluid in micro channel shows linear behaviors. And the mass flows are proportional to the second order function of pumping pressure that is imposed to membrane.

  • PDF

Performance Characteristics and Prediction on a Partially Admitted Single-Stage Axial-Type Micro Turbine (부분분사 축류형 마이크로터빈에서의 성능예측 및 성능특성에 관한 연구)

  • Cho Chong-Hyun;Choi Sang-Kyu;Cho Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.4 s.37
    • /
    • pp.13-19
    • /
    • 2006
  • For axial-type turbines which operate at partial admission, a performance prediction model is developed. In this study, losses generated within the turbine are classified to windage loss, expansion loss and mixing loss. The developed loss model is compared with experimental results. Particularly, if a turbine operates at a very low partial admission rate, a circular-type nozzle is more efficient than a rectangular-type nozzle. For this case, a performance prediction model is developed and an experiment is conducted with the circular-type nozzle. The predicted result is compared with the measured performance, and the developed model quite well agrees with the experimental results. So the developed model could be applied to predict the performance of axial-type turbines which operate at various partial admission rates or with different nozzle shape.

Analysis of Design and Operation Performance of Micro Gas Turbine : Part 2 - Variations in Engine's Operation and Performance Caused by Performance Degradation of Compressor and Turbine (마이크로 가스터빈 설계 및 운전 성능 분석 : 제2부 - 압축기와 터빈 성능저하에 의한 엔진 운전 및 성능변화)

  • Kim, Jeong Ho;Kim, Min Jae;Kim, Tong Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.30-35
    • /
    • 2015
  • This study analyzed the variations in the performance and operation of a 200 kW class micro gas turbine according to performance degradation of compressor and turbine. An in-house code, developed by the present authors and presented in the first part of these series of papers, were used for the analysis. The degradation of compressor and turbine were simulated by modifications in the their performance maps: mass flow rate, pressure ratio and efficiency were decreased from the reference values. Firstly, the variations in the operating conditions (air flow rate, pressure ratio) were predicted for the full load condition. Then, the same analysis were performed for a wide partial load operating range. The change in engine's performance (power output and efficiency) due to the component degradation was predicted. In addition, the change in the compressor surge margin, which is an important indicator for safe engine operation, was evaluated.

Study for the Increase of Micro Regenerative Pump Head

  • Horiguchi, Hironori;Wakiya, Keisuke;Tsujimoto, Yoshinobu;Sakagami, Masaaki;Tanaka, Shigeo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.189-196
    • /
    • 2009
  • The effect of inlet and outlet blade angles on a micro regenerative pump head was examined in experiments. The pump head was little increased by changing the blade angles compared with the original pump with the inlet and outlet blade angles of 0 degree. The effect of the axial clearance between the impeller and the casing on the pump head was also examined. The head was increased largely by decreasing the axial clearance. The computation of the internal flow was performed to clarify the cause of the increase of the pump head due to the decrease of the clearance. The local flow rate in the casing decreased as the leakage flow rate through the axial clearance decreased due to the decrease of the clearance. It was found that the larger head in the smaller clearance was just caused by the smaller local flow rate in the casing. In the case of the smaller clearance, the smaller local flow rate caused the smaller circumferential velocity near the front and rear sides of the impeller. This caused the increase of the angular momentum in the casing and the head.

Prediction of Power and Efficiency Requirement of Motor/generator for 500W Class Micro Gas Turbine Generator Considering Losses (손실을 고려한 500W급 마이크로 가스터빈 발전기용 전동발전기의 요구동력 및 요구효율 선정)

  • Park, Cheol-Hoon;Choi, Sang-Kyu;Ham, Sang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.24-30
    • /
    • 2011
  • 500W class MTG(Micro turbine generator) operating at 400,000 rpm is under development. From the cycle analysis, it is decided that the self-sustaining speed of MTG is 200,000rpm and the generating speed is 400,000 rpm. Therefore, motor should be designed so that it is able to rotate the rotor up to 200,000rpm and generator should designed so that it is able to generate 500W output at 400,000rpm. First step to design motor/generator is to determine the power and efficiency requirement. Not only the power into the compressor and from the turbine at the operating speed but also the mechanical and electrical losses should be considered in determining the power and efficiency requirement. This study presents the procedure and the results of determining the power and efficiency requirement considering the mechanical and electrical losses depending on the rotating speed which is measured from the experiment.

Performance Prediction of a Micro Gas Turbine Cogeneration System Using Correction Curves and its Applications (보정곡선을 이용한 마이크로가스터빈 열병합발전시스템의 성능예측과 활용)

  • Choi, Byeong Seon;Kim, Jeong Ho;Kim, Min Jae;Kim, Tong Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.27-35
    • /
    • 2016
  • The purpose of this study is to develop a method to predict the performance and economics of a micro gas turbine cogeneration system using performance correction curves. The variables of correction curves are ambient temperature, ambient pressure, relative humidity and load fraction. All of the values of correction factors were expressed as relative values with respect to design values at the ISO conditions. Once the correction curves are obtained, system performance can be predicted relatively easily compared to a detailed performance analysis method through a simple multiplication of the correction factors of various variables at any operating conditions. The predicted results using the correction curve method were compared with those by the detailed and more complex performance analysis in a wide operating range, and its feasibility was confirmed. To illustrate the usability of the correction curve method, the results of an economic analysis of a cogeneration system considering varying operating ambient condition and load was presented.

CFD Analysis on the Performance and Internal Flow of a Micro Cross-Flow Hydro Turbine in the Range of Very Low Specific Speed (극저비속도 영역 마이크로 횡류수차의 성능 및 내부유동 수치해석적 연구)

  • Choi, Young-Do;Son, Sung-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.25-30
    • /
    • 2012
  • Renewable energy has been interested because of fluctuation of oil price, depletion of fossil fuel resources and environmental impact. Amongst renewable energy resources, hydropower is most reliable and cost effective way. In this study, to develop a new type of micro hydro turbine which can be operated in the range of very low specific speed, a cross-flow hydro turbine with simple structure is proposed. The turbine is designed to be used at the very low specific speed range of hydropower resources, such as very high-head and considerably small-flow rate water resources. CFD analysis on the performance and internal flow characteristics of the turbine is conducted to obtain a practical data for the new design method of the turbine. Results show that optimized arrangement of guide vane angle and inner guide angle can give contribution to the turbine performance improvement.

Thin Film Elastohydrodynamcic Lubrication of Nanometer Scale (나노 미터 크기 유막에서의 탄성유체윤활)

  • 장시열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.173-182
    • /
    • 1997
  • In many practical lubricated contacts such as a rough concentrated contact on the sliding of nominally flat surfaces, the fluid may be of molecular (nanometer) scale owing to the asperity interactions on the surfaces. Under this condition, there is insufficient lubricant on the concentrated contact spot to maintain a realistic continuum. Rheological behavior for this kind of concentrated contact was studied to know whether the application of viscous fluid model is appropriate. The interaction of two rough surfaces is simplified as perfectly flat-rough surfaces contact under certain conditions by "composite topography" and for a nanometer scale fluid film, three kinds of rheological fluid behavior are analyzed in elastohydrodynamic asperity point contact.t contact.

  • PDF

Farbrication of Repeated 3D Shapes using Magnetorheological Fluid Polishing (자기유변유체 연마공정을 응용한 미세부품의 형상가공)

  • Kim Y.J.;Min B.K.;Lee S.J.;Seok J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1265-1268
    • /
    • 2005
  • Due to the increase of the need for reliable high density information storage devices, the demand for precise machining of the slider in HDD is rapidly growing. The present fabrication process of slider bears some serious problems such as low yield ratio in mass production, which is mainly caused by inefficient machining processes in shaping camber and crown on the slider. In order to increase slider yield ratio in HDD, a new systematic machining process is proposed and developed in this work. This new machining process includes the use of magnetorheological (MR) fluid, a smart polishing material generally used for ultra-fine surface finishing of micro structures. It is shown that the process proposed in this work enables to make camber and crown pattern in the scale of few tens of nanometers. Experiment results shows that the MR polishing can be also used for shaping process of micro structures.

  • PDF