• 제목/요약/키워드: micellar copolymerization

검색결과 2건 처리시간 0.016초

불화계 양친매성 폴리아크릴아마이드의 합성과 용액거동 (Synthesis and Solution Properties of Fluorinated Amphiphilic Polyacrylamide)

  • Zhao, Fangyuan;Du, Kai;Yi, Zhuo;Du, Chao;Fang, Zhao;Mao, Bingquan
    • 폴리머
    • /
    • 제39권3호
    • /
    • pp.403-411
    • /
    • 2015
  • A series of hydrophobically associating fluorinated amphiphilic polyacrylamide copolymers with remarkably high heat resistance and salt tolerance were synthesized by free radical micellar copolymerization, using acrylamide (AM) and sodium 2-acrylamido-tetradecane sulfonate ($AMC_{14}S$) as amphiphilic monomers, and 2-(perfluorooctyl) ethyl acrylate (PFHEA) as hydrophobic monomer. The structure of the terpolymer was characterized by FTIR, $^1H$ NMR and $^{19}F$ NMR. The solution properties of the terpolymers were investigated in details, and the results showed that the terpolymer solution had strong intermolecular hydrophobic association as the concentration exceeded the critical association concentration 1.5 g/L. The terpolymer solution possessed high surface activity, viscoelasticity, excellent heat resistance, salt tolerance and shearing resistance. The viscosity retention rate of copolymer solution was as high as 59.9% under the condition of fresh wastewater, $85^{\circ}C$ and a 60-days aging test.

The Formation of Metal Nanoparticles in pH-responsive Block Copolymers and Hydrogels

  • Anastasiadis, S.H.;Vamvakaki, M.;Palioura, D.;Spyros, A.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.85-85
    • /
    • 2006
  • The micellization behavior and the metal-nanoparticle formation in PDEAEMA-b-PHEGMA double hydrophilic block copolymers are investigated. The hydrophobic PDEAEMA block is pH-sensitive: at low pH it can be protonated and it becomes hydrophilic, leading to molecular solubility, whereas at higher pH micelles are formed; the behavior is studied by DLS, NMR and AFM. In these micellar nanoreactors, metal nanorystals nucleate and grow upon reduction with sizes in the range of a few nm's as observed by TEM and XRD. Similarly, metal nanocrystals can be formed within pH-sensitive microgels (${\sim}250nm$ in diameter), synthesized by emulsion copolymerization of DEAEMA, which also exhibit reversible swelling properties in water by adjusting the pH.

  • PDF