• Title/Summary/Keyword: miRNA

Search Result 1,550, Processing Time 0.032 seconds

Long non-coding RNA T-cell leukemia/lymphoma 6 serves as a sponge for miR-21 modulating the cell proliferation of retinoblastoma through PTEN

  • Tao, Sisi;Wang, Weidong;Liu, Pengfei;Wang, Hua;Chen, Weirong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.449-458
    • /
    • 2019
  • Retinoblastoma (Rb) is one of the most common eye malignancies occur in childhood. The crucial roles of non-coding RNAs, particularly long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been widely reported in Rb progression. In the present study, we found the expression of lncRNA T-cell leukemia/lymphoma 6 (TCL6) was significantly downregulated in Rb tissues and cell lines. Knockdown of lncRNA TCL6 promoted cell proliferation while reduced cell apoptosis in Rb cells. Moreover, lncRNA TCL6 serves as a sponge for miR-21, a previously-reported oncogenic miRNA in Rb, by direct targeting to negatively regulated miR-21 expression, therefore modulating Rb proliferation through miR-21. TCL6 overexpression inhibited Rb cell proliferation while miR-21 overexpression exerted an opposing effect; the effect of TCL6 overexpression was partially attenuated by miR-21 overexpression. PTEN/PI3K/AKT signaling pathway was involved in lncRNA TCL6/miR-21 axis modulating Rb cell proliferation. Taken together, lncRNA TCL6 serves as a tumor suppressor by acting as a sponge for miR-21 to counteract miR-21-mediated PTEN repression.

MicroRNA Analysis during Cultured Odontoblast Differentiation

  • Park, Min-Gyeong;Lee, Myoung-Hwa;Yu, Sun-Kyoung;Park, Eu-Teum;Kim, Seog;Lee, Seul-Ah;Moon, Yeon-Hee;Kim, Heung-Joong;Kim, Chun-Sung;Kim, Do-Kyung
    • International Journal of Oral Biology
    • /
    • v.37 no.3
    • /
    • pp.146-152
    • /
    • 2012
  • MicroRNAs (miRNAs, miRs) are about 21-25 nucleotides in length and regulate mRNA translation by base pairing to partially complementary sites, predominantly in the 3'-untranslated region (3'-UTR) of the target mRNA. In this study, the expression profile of miRNAs was compared and analyzed for the establishment of miRNA-related odontoblast differentiation using MDPC-23 cells derived from mouse dental papilla cells. To determine the expression profile of miRNAs during the differentiation of MDPC-23 cells, we employed miRNA microarray analysis, quantitative real-time PCR (qRT-PCR) and Alizaline red-S staining. In the miRNA microarray analysis, 11 miRNAs were found to be up- or down-regulated more than 3-fold between day 0 (control) and day 5 of MDPC-23 cell differentiation among the 1,769 miRNAs examined. In qRT-PCR analysis, the expression levels of two of these molecules, miR-194 and miR-126, were increased and decreased in the control MDPC-23 cells compared with the MDPC-23 cells at day 5 of differentiation, respectively. Importantly, the overexpression of miR-194 significantly accelerated mineralization compared with the control cultures during the differentiation of MDPC-23 cells. These results suggest that the miR-194 augments MDPC-23 cell differentiation, and potently accelerates the mineralization process. Moreover, these in vitro results show that different miRNAs are deregulated during the differentiation of MDPC-23 cells, suggesting the involvement of these genes in the differentiation and mineralization of odontoblasts.

Identification of Candidate Porcine miRNA-302/367 Cluster and Its Function in Somatic Cell Reprogramming

  • Son, Dong-Chan;Hwang, Jae Yeon;Lee, Chang-Kyu
    • Reproductive and Developmental Biology
    • /
    • v.38 no.2
    • /
    • pp.79-84
    • /
    • 2014
  • MicroRNAs (miRNAs) are approximately 22 nucleotides of small noncoding RNAs that control gene expression at the posttranscriptional level through translational inhibition and destabilization of their target mRNAs. The miRNAs are phylogenetically conserved and have been shown to be instrumental in a wide variety of key biological processes including cell cycle regulation, apoptosis, metabolism, imprinting, and differentiation. Recently, a paper has shown that expression of the miRNA-302/367 cluster expressed abundantly in mouse and human embryonic stem cells (ESCs) can directly reprogram mouse and human somatic cells to induced pluripotent stem cells (iPSCs) efficiently in the absence of any of the four factors, Oct4, Sox2, c-Myc, and Klf4. To apply this efficient method to porcine, we analyzed porcine genomic sequence containing predicted porcine miRNA-302/367 cluster through ENSEMBL database, generated a non-replicative episomal vector system including miRNA-302/367 cluster originated from porcine embryonic fibroblasts (PEF), and tried to make porcine iPSCs by transfection of the miRNA-302/367 cluster. Colonies expressing EGFP and forming compact shape were found, but they were not established as iPSC lines. Our data in this study show that pig miRNA-302/367 cluster could not satisfy requirement of PEF reprogramming conditions for pluripotency. To make pig iPSC lines by miRNA, further studies on the role of miRNAs in pluripotency and new trials of transfection with conventional reprogramming factors are needed.

Rationally designed siRNAs without miRNA-like off-target repression

  • Seok, Heeyoung;Jang, Eun-Sook;Chi, Sung Wook
    • BMB Reports
    • /
    • v.49 no.3
    • /
    • pp.135-136
    • /
    • 2016
  • Small interfering RNAs (siRNAs) have been developed to intentionally repress a specific gene expression by directing RNA-induced silencing complex (RISC), mimicking the endogenous gene silencer, microRNAs (miRNAs). Although siRNA is designed to be perfectly complementary to an intended target mRNA, it also suppresses hundreds of off-targets by the way that miRNAs recognize targets. Until now, there is no efficient way to avoid such off-target repression, although the mode of miRNA-like interaction has been proposed. Rationally based on the model called "transitional nucleation" which pre-requires base-pairs from position 2 to the pivot (position 6) with targets, we developed a simple chemical modification which completely eliminates miRNA-like off-target repression (0%), achieved by substituting a nucleotide in pivot with abasic spacers (dSpacer or C3 spacer), which potentially destabilize the transitional nucleation. Furthermore, by alleviating steric hindrance in the complex with Argonaute (Ago), abasic pivot substitution also preserves near-perfect on-target activity (∼80-100%). Abasic pivot substitution offers a general means of harnessing target specificity of siRNAs to experimental and clinical applications where misleading and deleterious phenotypes from off-target repression must be considered.

Bioinformatical Analysis of Messenger RNA and MicroRNA on Canine Splenic Tumors Based on Malignancy and Biopsy Sites

  • Eunpyo Kim;Giup Jang;Jin-Wook Kim;Wan-Hee Kim;Geon-A Kim
    • Journal of Veterinary Clinics
    • /
    • v.40 no.2
    • /
    • pp.164-174
    • /
    • 2023
  • Canine splenic tumors (STs) are commonly diagnosed during imaging examinations, such as in X-ray and ultrasonography examinations, suggesting their higher prevalence, especially in older dogs. Despite this high prevalence, there are no effective treatment options for STs because of the difficulties in determining therapeutic targets. However, recently, the importance of microRNAs (miRNAs) has evolved owing to their ambivalent characteristics. Biomarkers and novel therapies using miRNAs have been well-studied in human cancer research compared to canine research, except for mammary gland tumors. Therefore, this study aimed to comparatively analyze miRNA expression profiles according to malignancy and biopsy sites to identify novel therapeutic and diagnostic targets. Tissue samples were collected directly from splenic tumor masses and immersed in RNAlater solution for further analysis. To investigate differentially expressed genes (DEGs) between tumor and normal tissues, we used RNA-seq and miRNA microarray analysis. Then, functional analysis based on DEGs was conducted to sort tumor-related DEGs. We found that cfa-miR-150 was upregulated in benign tumors, whereas cfa-miR-134 was upregulated in malignant tumors. Despite limited information on canine miRNAs, we identified two potential biomarkers for the differential diagnosis of STs.

Exosomes derived from microRNA-584 transfected mesenchymal stem cells: novel alternative therapeutic vehicles for cancer therapy

  • Kim, Ran;Lee, Seokyeon;Lee, Jihyun;Kim, Minji;Kim, Won Jung;Lee, Hee Won;Lee, Min Young;Kim, Jongmin;Chang, Woochul
    • BMB Reports
    • /
    • v.51 no.8
    • /
    • pp.406-411
    • /
    • 2018
  • Exosomes are small membranous vesicles which contain abundant RNA molecules, and are transferred from releasing cells to uptaking cells. MicroRNA (miRNA) is one of the transferred molecules affecting the adopted cells, including glioma cells. We hypothesized that mesenchymal stem cells (MSCs) can secrete exosomes loading miRNA and have important effects on the progress of gliomas. To determine these effects by treating exosomal miRNA in culture media of miRNA mimic transfected MSCs, we assessed the in vitro cell proliferation and invasion capabilities, and the expression level of relative proteins associated with cell apoptosis, growth and migration. For animal studies, the mice injected with U87 cells were exposed to exosomes derived from miRNA-584-5p transfected MSCs, to confirm the influence of exosomal miRNA on the progress of glioma. Based on our results, we propose a new targeted cancer therapy wherein exosomes derived from miRNA transfected MSCs could be used to modulate tumor progress as the anticancer vehicles.

Neuronal Activity-Dependent Regulation of MicroRNAs

  • Sim, Su-Eon;Bakes, Joseph;Kaang, Bong-Kiun
    • Molecules and Cells
    • /
    • v.37 no.7
    • /
    • pp.511-517
    • /
    • 2014
  • MicroRNAs are non-coding short (~23 nucleotides) RNAs that mediate post-transcriptional regulation through sequence-specific gene silencing. The role of miRNAs in neuronal development, synapse formation and synaptic plasticity has been highlighted. However, the role of neuronal activity on miRNA regulation has been less focused. Neuronal activity-dependent regulation of miRNA may finetune gene expression in response to synaptic plasticity and memory formation. Here, we provide an overview of miRNA regulation by neuronal activity including high-throughput screening studies. We also discuss the possible molecular mechanisms of activity-dependent induction and turnover of miRNAs.

Stool-based MicroRNA for Early Diagnosis of Colorectal Cancer

  • Ji Hye Choi;Young-Seok Cho
    • Journal of Digestive Cancer Research
    • /
    • v.1 no.2
    • /
    • pp.95-99
    • /
    • 2013
  • MicroRNA (miRNA) dysregulations are associated with various types of human cancers, and miRNAs can function as tumor suppressors and oncogenes. Emerging evidence has shown that miRNA pathway is also altered during colorectal tumorigenesis. The detection of cancer-related miRNAs in stool samples may become useful diagnostic marker for colorectal cancer, because miRNAs in stool samples has high stability, and maintains a high portion of its original level. Recent studies reported that stool-based miRNAs can offer more sensitivity and specificity than currently used stool-based screening methods for CRC. In addition, unlike fecal occult blood test, sampling on consecutive dates and special dietary restrictions are not required. In this review, the authors discuss stool-based miRNA for the early diagnosis of CRC and perspectives on future application.

  • PDF

Expression of MicroRNA-221 in Korean Patients with Multiple Myeloma (한국인의 다발성골수종 환자에서 MicroRNA-221의 발현)

  • Choi, Woo-Soon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.2
    • /
    • pp.197-204
    • /
    • 2018
  • Multiple myeloma (MM) is the leading cause of death among hematologic neoplasms. Recently, microRNA has been reported to be useful in the diagnosis of multiple myeloma. This study examined whether miR-221 could be used as a diagnostic marker for multiple myeloma. The study was performed on 20 patients with multiple myeloma without any other hematological diseases. MicroRNA extraction was performed using formalin-fixed paraffin-embedded (FFPE) tissues obtained from the bone marrow of patients with multiple myeloma. miR-15a, miR-16, miR-21, miR-181a, and miR-221 were selected as the microRNA target genes for multiple myeloma. The significance of microRNA was based on a fold change of <1.5. To quantify the fold changes, data normalized to the human gene, SNORD43, were used as the values of the patient group. Fold change values greater than 1.5 were defined as "overexpression", whereas values less than -1.5 were defined as "underexpression". Of note, 65.0% (13/20) of samples showed significant "overexpression" in the levels of miR-221 expression and plasma cells with a group of more and less than 30% in MM patients did not show any significance of plasma cell (P<0.05). The results of other studies showing a correlation between the expression of miR-221 and MM in Caucasians were confirmed. These results suggest that miR-221 may be a useful indicator for diagnosing patients with MM. In conclusion, miR-221 is useful in the diagnosis and determining the prognosis of multiple myeloma in Koreans.

Characterization of the MicroRNA Expression Profile of Cervical Squamous Cell Carcinoma Metastases

  • Ding, Hui;Wu, Yi-Lin;Wang, Ying-Xia;Zhu, Fu-Fan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1675-1679
    • /
    • 2014
  • Objectives: MicroRNAs (miRNAs) are important regulators of many physiological and pathological processes, including tumorigenesis and metastasis. In this study, we sought to determine the underlying molecular mechanisms of metastatic cervical carcinoma by performing miRNA profiling. Methods: Tissue samples were collected from ten cervical squamous cancer patients who underwent hysterectomy and pelvic lymph node (PLN) dissection in our hospital, including four PLN-positive (metastatic) cases and six PLN-negative (non-metastatic) cases. A miRNA microarray platform with 1223 probes was used to determine the miRNA expression profiles of these two tissue types and case groups. MiRNAs having at least 4-fold differential expression between PLN-positive and PLN-negative cervical cancer tissues were bioinformatically analyzed for target gene prediction. MiRNAs with tumor-associated target genes were validated by quantitative reverse transcription-polymerase chain reaction (RT-PCR). Results: Thirty-nine miRNAs were differentially expressed (>4-fold) between the PLN-positive and PLN-negative groups, of which, 22 were up-regulated and 17 were down-regulated. Sixty-nine percent of the miRNAs (27/39) had tumor-associated target genes, and the expression levels of six of those (miR-126, miR-96, miR-144, miR-657, miR-490-5p, and miR-323-3p) were confirmed by quantitative (q)RT-PCR. Conclusions: Six MiRNAs with predicted tumor-associated target genes encoding proteins that are known to be involved in cell adhesion, cytoskeletal remodeling, cell proliferation, cell migration, and apoptosis were identified. These findings suggest that a panel of miRNAs may regulate multiple and various steps of the metastasis cascade by targeting metastasis-associated genes. Since these six miRNAs are predicted to target tumor-associated genes, it is likely that they contribute to the metastatic potential of cervical cancer and may aid in prognosis or molecular therapy.