• Title/Summary/Keyword: miR-23a

Search Result 292, Processing Time 0.022 seconds

Comparison of Nuclear Status and Developmental Potential between Polar Body Extruded Oocytes and Non-extruded Oocytes on in vitro Maturation and Development of Porcine Follicular Oocytes (돼지 난모세포의 체외 성숙 후 극체 방출 및 미방출란의 핵형과 배발달율)

  • Kim, H.J.;Cho, S.R.;Choe, J.Y.;Choi, S.H.;Han, M.H.;Son, D.S.;Kim, Y.G.;Lee, S.S.;Ryu, I.S.;Kim, I.C.;Kim, I.H.;Im, K.S.
    • Journal of Embryo Transfer
    • /
    • v.21 no.3
    • /
    • pp.169-175
    • /
    • 2006
  • The objective of this study was carried out to examine the polar body extrusion of in vitro matured porcine follicular oocytes as a non-invasive marker of oocyte quality to know the developmental competence in advance. The porcine oocytes matured for 48 hours were examined the polar body extrusion and some parts were stained. The examined oocytes were matured for additional $16{\sim}18$ hours and activated with 7% ethanol and cultured in $5{\mu}g/ml$ cytochalasin B for 5 hours for diploid formation. The treated oocytes were washed and cultured for 7 days. The polar body extrusion and degeneration rates were varied with $9.9{\sim}52.4%$ and $21.4{\sim}61.8%$ by repetition. The polar body extruded oocytes were shown the polar body chromosome and metaphase II plate by staining. However the non-extruded oocytes were shown expanded nucleus with 39.1%, premature chromosome condensation with 19.6%, metaphase I plate with 10.9 %, metaphase II with 13%, condensed chromatin with 6.5%, and absent nuclear material with 8.7%. The oocytes that were not examined for the polar body extrusion were cleaved 45.0%, and developed to blastocyst stage with 11.3%. In examined oocytes for polar body extrusion,. the polar body extruded oocytes were cleaved 94.2% and developed with 42.5%. This result suggests that discarding of the degenerating oocytes and oocytes that not extruded polar body will be effective for experiments of culturing effect in porcine embryos and embryo biotechnology.

Development of Formulas for the Estimation of Renal Depth and Application in the Measurement of Glomerular Filtration Rate in Koreans (사구체 여과율 측정을 위한 한국인의 신장 깊이에 관한 방정식 도출과 이용)

  • Yoo, Ie-Ryung;Kim, Sung-Hoon;Chung, Yong-An;Jung, Hyun-Seok;Lee, Hae-Giu;Park, Young-Ha;Lee, Sung-Yong;Sohn, Hyung-Seon;Chung, Soo-Kyo;Kim, Hyun-Mi;Lee, Hyung-Goo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.5
    • /
    • pp.418-425
    • /
    • 2000
  • Purpose: There is no established formula for estimating renal depths in Korean. As a result, we undertook this study to develop a new formula, and to apply this formula in the calculation of glomerular filtration rate (GFR). Materials and Methods: We measured the renal depth (RD) on the abdominal CT obtained in 300 adults (M:F: 167:133, mean age 50.9 years) without known renal diseases. The RDs measured by CT were compared with the estimated RDs based on the Tonnesen and Taylor equations. New formulas were derived from the measured RDs in 200 out of 300 patients based on several variables such as sex, age, weight, and height by multiple regression analysis. The RDs estimated from the new formulas were compared with the measured RDs in the remaining 100 patients as a control. In 48 patients who underwent Tc-99m DTPA renal scintigraphy, GFR was measured with three equations (new formula, Tonnesen and Taylor equations), respectively, and compared with each other. Results: The mean values of the RDs measured from CT were 6.9 cm for right kidney of the men (MRK), 6.7 cm for left kidney of the men (MLK), 6.7 cm for right kidney of the women (WRK), and 6.6 cm for left kidney of the women (WLK). The RDs estimated from Tonnesen equation were shorter than the ones measured from CT significantly. The newly derived formulas were 12.813 (weight/height)+0.002 (age)+ 2.264 for MRK, 15.344 (weight/height)+0.011 (age)+0.557 for MLK, 12.936 (weight/height)+ 0.014 (age)+1.462 for WRK and 13.488 (weight/height)+0.019 (age)+0.762 for WLK. The correlation coefficients of the RD measured from CT and estimated from the new formula were 0.529 in MRK, 0.729 in MLK, 0.601 in WRK, and 0.724 in WLK, respectively. The GFRs from the new formula were significantly higher than those from the Tonnesen equation significantly, which was the most similar to normal GFR values. Conclusion: We generated new formulas for estimating RD in Korean from the data by CT. By adopting these formulas, we expect that GFR can be measured by the Gates method accurately in Korean.

  • PDF