• Title/Summary/Keyword: mi transcription factor

Search Result 211, Processing Time 0.043 seconds

Adenoviral-Mediated Ref-1 Overexpression Potentiates NO Production in Bradykinin-Stimulated Endothelial Cells (Bradykinin으로 자극한 혈관내피세포에서 Ref-1의 세포내 과발현에 의한 NO 생성 증진 효과에 대한 연구)

  • Song, Ju-Dong;Kim, Kang-Mi;Lee, Sang-Kwon;Kim, Jong-Min;Park, Young-Chul
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.905-909
    • /
    • 2007
  • The dual-function protein redox factor-1 (Ref-1) is essential for base excision repair of oxidatively damaged DNA and also governs the activation of many redox-sensitive transcription factors. We examined the role of Ref-1 in regulation of nitric oxide (NO) synthesis employing adenoviral-mediatedoverexpression of Ref-1 in bradykinin-stimulated endothelial cells. Intracellular NO was detected with the NO-sensitive fluorophore DAF-2. Overexpression of Ref-1 potentiates bradykinin-stimulated NO production in endothelial cells. And, cells ifected with AdRef-1 showed higher fluorescence intensity compared with uninfected or AdD1312-infected cells. In parallel with this, over expression of Ref-1 also stimulated endothelial NO synthase (eNOS) enzyme activity, compared with unifected or AdD1312-infected cells, in bradykinin-stimulated cells as well as in unstimulated cells. These results suggest that Ref-1 implicates in endothelium-dependent vasorelaxation resulting from NO production in vascular system.

Inhibition of LPS induced iNOS, COX-2 and cytokines expression by kaempferol-3-O-${\beta}$-D-sophoroside through the $NF{-\kappa}B$ inactivation in RAW 264.7 cells (Kaempferol-3-O-${\beta}$-D-sophoroside의 RAW 264.7 세포에서 $NF{-\kappa}B$ 억제를 통한 LPS에 의해 유도되는 iNOS, COX-2 및 cytokine들의 발현 저해효과)

  • Park, Seung-Jae;Shin, Ji-Sun;Cho, Woong;Cho, Young-Wuk;Ahn, Eun-Mi;Baek, Nam-In;Lee, Kyung-Tae
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.2
    • /
    • pp.95-103
    • /
    • 2008
  • In the present study, we investigated the anti-inflammatory effects by kaempferol-3-O-${\beta}$-D-sophoroside (KS) isolated from Sophora japonica (Leguminosae) on the lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin ($PGE_2$) production by RAW 264.7 cell line compared with kaempferol. KS significantly inhibited the LPS-induced NO and $PGE_2$ production. Consistent with these observations, KS reduced the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in a concentration-dependent manner. In addition, the release and the mRNA expression levels of tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and interleukin-6 (IL-6) were also reduced by KS. Moreover, KS attenuated the LPS-induced activation of nuclear factor-kappa B ($NF{-\kappa}B$), a transcription factor necessary for pro-inflammatory mediators, iNOS, COX-2, $TNF-{\alpha}$ and IL-6 expression. These results suggest that the down regulation of iNOS, COX-2, $TNF-{\alpha}$, and IL-6 expression by KS are achieved by the downregulation of $NF{-\kappa}B$ activity, and that is also responsible for its anti-inflammatory effects.

Effects of Sulraphane on Osteoclastogenesis in RAW 264.7 (RAW 264.7 세포에서 sulforaphane의 파골세포형성 저해효과)

  • Hwang, Joon-Ho;Yi, Mi-Ran;Kang, Chang-Hee;Bu, Hee-Jung
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.151-160
    • /
    • 2016
  • Inflammatory cytokines play a major role in osteoclastogenesis, leading to the bone resorption that is frequently associated with osteoporosis. Sulforaphane, isolated from the Broccoli(Brassica oleracea var. italia) florets, inhibits the production of inflamatory cytokine. In the present study, we determined inhibitory effect of sulforaphane on Receptor activator of nuclear factor κB ligand(RANKL)-induced osteoclast formation. Sulforaphane inhibited the expression of osteoclast marker genes, such as tartrate-resistant acid phosphatase(TRAP), cathepsin K, matrix metalloproteinase 9(MMP-9), and calcitonin receptor in RANKL-induced RAW 264.7 macrophage. Also, sluforaphane inhibited the expression of osteoclast protein, such as TRAP, MMP-9, tumor necrosis factor receptor-associated factor 6(TRAF6) and transcription factor nuclease factor of activated T cells(NFAT)c1. Sulforaphane inhibited RANKL-induced activiation of nuclear factor kappaB(NF-kappaB) by suppression RANKL-mediated NF-kappaB transcriptional acitivation. We are confirmed that sulforaphane inhibits not only transcriptional activity of NF-kappaB but also expressions of the osteoclastogenesis factors(TRAP, cathepsin K, MMP-9, calcitonin, TRAF6) and trranscription factor NFATc1.

Role of Nuclear Factor (NF)-κB Activation in Tumor Growth and Metastasis (종양의 성장 및 전이에 있어서 NF-κB의 역할)

  • Ko, Hyun-Mi;Choi, Jung-Hwa;Ra, Myung-Suk;Im, Suhn-Young
    • IMMUNE NETWORK
    • /
    • v.3 no.1
    • /
    • pp.38-46
    • /
    • 2003
  • Background: Platelet-activating factor (PAF) induces nuclear factor $(NF)-{\kappa}B$ activation and angiogenesis and increases tumor growth and pulmonary tumor metastasis in vivo. The role of $NF-{\kappa}B$ activation in PAF-induced angiogenesis in a mouse model of Matrigel implantation, and in PAF-mediated pulmonary tumor metastasis were investigated. Methods: Angiogenesis using Matrigel and experimental pulmonary tumor metastasis were tested in a mouse model. Electrophoretic mobility shift assay was done for the assessment of $NF-{\kappa}B$ translocation to the nucleus. Expression of angiogenic factors, such as tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\alpha}$, basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) were tested by RT-PCR and ELISA. Results: PAF induced a dose- and time-dependent angiogenic response. PAF-induced angiogenesis was significantly blocked by PAF antagonist, CV6209, and inhibitors of $NF-{\kappa}B$ expression or action, including antisense oligonucleotides to p65 subunit of $NF-{\kappa}B$ (p65 AS) and antioxidants such as ${\alpha}$-tocopherol and N-acetyl-L-cysteine. In vitro, PAF activated the transcription factor, $NF-{\kappa}B$ and induced mRNA expression of $TNF-{\alpha}$, $IL-1{\alpha}$, bFGF, VEGF, and its receptor, KDR. The PAF-induced expression of the above mentioned factors was inhibited by p65 AS or antioxidants. Also, protein synthesis of VEGF was increased by PAF and inhibited by p65 AS or antioxidants. The angiogenic effect of PAF was blocked when anti-VEGF antibodies was treated or antibodies against $TNF-{\alpha}$, $IL-1{\alpha}$, and bFGF was co-administrated, but not by antibodies against $TNF-{\alpha}$, $IL-1{\alpha}$, and bFGF each alone. PAF-augmented pulmonary tumor metastasis was inhibited by p65 AS or antioxidants. Conclusion: These data indicate that PAF increases angiogenesis and pulmonary tumor metastasis through $NF-{\kappa}B$ activation and expression of $NF-{\kappa}B$-dependent angiogenic factors.

THE ROLE OF TRANSCRIPTION FACTOR MSX2 AND DLX5 IN CALVARIAL BONE AND SUTURE DEVELOPMENT (두개골 및 두개봉합부 초기발육과정에서의 전사조절인자인 Msx2와 Dlx5의 역할)

  • Song, Min-Ho;Park, Mi-Hyun;Nam, Soon-Hyeun;Kim, Young-Jin;Ryoo, Hyun-Mo;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.3
    • /
    • pp.391-405
    • /
    • 2003
  • Craniosynostosis, known as a premature fusion of cranial sutures, is a developmental disorder characterized by precocious differentiation and mineralization of osteoblasts in the calvarial sutures. Recent genetic studies have demonstrated that mutation in the homeobox gene Msx2 causes Boston-type human craniosynostosis. Additionally, the phenotype of Dlx5 homozygote mutant mouse presents craniofacial abnormalities including a delayed ossification of calvarial bone. Furthermore transcription of osteocalcin, a mature osteoblast marker, is reciprocally regulated by the homeodomain proteins Msx2 and Dlx5. These facts suggest important roles of osteocalcin, Msx2 and Dlx5 genes in the calvarial bone growth and suture morphogenesis. To elucidate the function of these molecules in the early morphogenesis of mouse cranial sutures, we have first analyzed by in situ hybridization the expression of osteocalcin, Msx2 and Dlx5 genes in the developing parietal bone and sagittal suture of mouse calvaria during the embryonic (E15-E18) stage. Osteocalcin mRNA was found in the periosteum of parietal bones from E15, and gradually more highly expressed with aging. Msx2 mRNA was intensely expressed in the sutural mesenchyme, osteogenic fronts and mildly expressed in the dura mater during the embryonic stage. Dlx5 mRNA was intensely expressed osteogenic fronts and the periostem of parietal bones. To further examine the upstream signaling molecules of transcription factor Msx2 and Dlx5, we have done in vitro experiments in E15.5 mouse calvarial explants. Interestingly, implantation of BMP2-, BMP4-soaked beads onto the osteogenic fronts after 48 hours organ culture induced etopic expressions of Msx2 and Dlx5 genes. On the other hand, overexpression of $TGF{\beta}1$, GDF-6, -7, FGF-2, -4 and Shh did not induce the expression of Msx2 and Dlx5. Taken together. these data indicate that transcription factor Msx2 and Dlx5 play critical roles in the calvarial bone and suture development, and that BMP siganling is involved in the osteogenesis of calvarial bones and the maintenance of cranial sutures through regulating these two transcriotpn factors. Furthermore, different expression patterns between Msx2 and Dlx5 suggest their specific functions in the osteoblast differentiation.

  • PDF

Characterization of Osh3, an Oxysterol-binding Protein, in Filamentous Growth of Saccharomyces cerevisiae and Candida albicans

  • Hur, Hyang-Sook;Ryu, Ji-Ho;Kim, Kwang-Hoon;Kim, Jin-Mi
    • Journal of Microbiology
    • /
    • v.44 no.5
    • /
    • pp.523-529
    • /
    • 2006
  • OSH3 is one of the seven yeast homologues of the oxysterol binding proteins (OSBPs) which have the major binding affinity to the oxysterols and function as regulator of cholesterol biosynthesis in mammals. Mutational analysis of OSH3 showed that OSH3 plays a regulatory role in the yeast-to-hyphal transition through its oxysterol-binding domain in Saccharomyces cerevisiae. The OSH3 gene was also identified in the pathogenic yeast Candida albicans. Deletion of OSH3 caused a defect in the filamentous growth, which is the major cause of the C. albicans pathogencity. The filamentation defect of the mutation in the MAPK-associated transcription factor, namely $cph1{\Delta}$ was suppressed by overexpression of OSH3. These findings suggest the regulatory roles of OSH3 in the yeast filamentous growth and the functional conservations of OSH3 in S. cerevisiae and C. albicans.

Upregulation of smpd3 via BMP2 stimulation and Runx2

  • Chae, Young-Mi;Heo, Sun-Hee;Kim, Jae-Young;Lee, Jae-Mok;Ryoo, Hyun-Mo;Cho, Je-Yoel
    • BMB Reports
    • /
    • v.42 no.2
    • /
    • pp.86-90
    • /
    • 2009
  • Deletion of smpd3 induces osteogenesis and dentinogenesis imperfecta in mice. smpd3 is highly elevated in the parietal bones of developing mouse calvaria, but not in sutural mesenchymes. Here, we examine the mechanism of smpd3 regulation, which involves BMP2 stimulation of Runx2. smpd3 mRNA expression increased in response to BMP2 treatment and Runx2 transfection in C2C12 cells. The Runx2-responsive element (RRE) encoded within the -562 to -557 region is important for activation of the smpd3 promoter by Runx2. Electrophoretic mobility shift assays revealed that Runx2 binds strongly to the -355 to -350 RRE and less strongly to the -562 to -557 site. Thus, the smpd3 promoter is activated by BMP2 and is directly regulated by the Runx2 transcription factor. This novel description of smpd3 regulation will aid further studies of bone development and osteogenesis.

Antiobesity Effect of Mixture of Black Garlic and Garsinia cambogia Extracts in 3T3-L1 Adipocytes and L6 Skeletal Muscle Cells

  • Jung, Young-Mi;Lee, Dong-Sub;Lee, Seon-Ha;Jeoung, Nam-Ho;Kim, Bok-Jo
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.291-298
    • /
    • 2012
  • The antiobesity effect of the mixture of black garlic and Garsinia cambogia extracts (BGG) was investigated by measuring the Oil red O staining and the expressions of adipogenic genes during preadipocyte differentiation by real-time PCR in the 3T3-L1 adipocytes. BGG reduced contents of Oil red O dye in the 3T3-L1 adipocytes. mRNA expression levels of SREBP1c, C/EBPa, aP2/FABP4, and $PPAR{\gamma}$ which are adipogenic transcription factor, in cells treated with BGG were also significantly down regulated. Also, the phosphorylation of AMP-activated protein kinase (AMPK) in L6 cells was more increased by BGG. These results indicate that BGG seems to be more attractive compound for application of industry than individual extracts such as black garlic and Garsinia cambogia, considering it has two effects not only inhibit the preadipocyte differentiation but also activate the phosphorylation of AMPK unlike other two compound.

Characterization of Pathogenesis and Plant Defence-related Genes Against Potato virus X infection empolying Potato X virus expresssin vector

  • Park, Mi-Ri;Kwon, Sun-Jung;Kim, Kook-Hyung
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.74.1-74
    • /
    • 2003
  • Differential display (DD) of mRNA is a technique in which mRNA species expressed by a cell population are reverse transcribed and then amplified by many separate polymerase chain reactions (PCR). Using DD-RT-PCR we obtained many genes that expressed differentially in healthy and PVX-infected Nicotiana benthamima, using total RNAs extracted from healthy and PVX-infected N. benthamiana plants. Three hundred and twenty-five DNA fragments isolated from DD-RT-PCR were cloned and sequenced for further characterization. Several host genes including SKPI-like protein, heat shock transcription factor and Avr9/Cf-9 rapidly elicited protein were selected to obtain full-length open reading frame and to characterize their potential involvement in virus disease development and/or host's defense against virus infection employing PVX-based expression vector. Transcrips from wild-type and clones containing each selected gene were inoculated onto N. benthamiana Levels of virus replication were confirmedby RT-PCR and RNA blot analysis, Expression profiles and potential role(s) of selected genes upon PVX infection will be discussed.

  • PDF

Sensitization to Doxorubicin by Inhibition of the Nrf2-Antioxidant System (Doxorubicin 매개 세포독성에 대한 Nrf2 경로의 역할)

  • Cho, Jeong-Min;Park, Hyun-M;Kwak, Mi-Kyoung
    • YAKHAK HOEJI
    • /
    • v.52 no.1
    • /
    • pp.67-72
    • /
    • 2008
  • The use of doxorubicin, which is one of the most effective anticancer agents, is often limited by occurrence of acquired resistance in tumor cells. GSH has been shown to be involved in the development of this drug resistance. Transcription factor Nrf2 governs the expression of GSH synthesizing glutamylcysteine ligase (GCL), as well as multiple phase 2 detoxifying enzymes. Here we show that Nrf2 is one of factors determining doxorubicin sensitivity. Nrf2-deficient fibroblasts (murine embryonic fibroblasts, MEF) were more susceptible to doxorubicin mediated cell death than wild-type cells. Doxorubicin treatment elevated levels of Nrf2-regulated genes including NAD(P)H: quinone oxidoreductase (Nqo1) and GCL in wild-type fibroblasts, while no induction was observed in Nrf2-deficient cells. Doxorubicin resistance in human ovarian SK-OV cells was reversed by treatment with L-buthionine-sulfoxamine (BSO), which is depleting intracellular GSH. Finally, transfection of SK-OV cells with Nrf2 siRNA resulted in exacerbated cytotoxicity following doxorubicin treatment compared to scrambled RNA control. These results indicate that the Nrf2 pathway, which plays a protective role in normal cells, can be a potential target to control cancer cell resistance to anticancer agents.