• Title/Summary/Keyword: metrics

Search Result 1,948, Processing Time 0.031 seconds

Smartphone-Attachable Vascular Compliance Monitoring Module (스마트폰 탈착형 혈관 탄성 모니터링 모듈)

  • Se-Hwan Yang;Ji-Yong Um
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.221-227
    • /
    • 2024
  • This paper presents a smartphone-attachable vascular compliance monitoring module. The proposed sensor module measures photoplethysmogram (PPG) and reconstructs an accelerated PPG waveform. The feature points are extracted from the accelerated PPG waves, and vascular compliance is estimated using these extracted features. The module is powered via the smartphone's USB terminal and transmits the acquired waveforms along with vascular compliance values through Bluetooth. The transmitted waveforms and vascular compliance value are displayed through the smartphone application. This work proposes an assessment method for consistency of PPG instrumentation, and it was implemented in a processor of sensor module. The proposed sensor module can be easily attached to smartphone that does not support PPG instrumentation, providing simple measurment and numerical analysis of vascular compliance. To verify the performance of the implemented sensor module, we acquired vascular compliance and pulse pressure data from 29 subjects. Pulse pressure, which serves as a representative indicator of vascular compliance, was obtained using a commercial blood pressure monitor. The analysis results showed that the Pearson coefficient between vascular compliance and pulse pressure was 0.778, confirming a relatively high correlation between two metrics.

One-shot multi-speaker text-to-speech using RawNet3 speaker representation (RawNet3를 통해 추출한 화자 특성 기반 원샷 다화자 음성합성 시스템)

  • Sohee Han;Jisub Um;Hoirin Kim
    • Phonetics and Speech Sciences
    • /
    • v.16 no.1
    • /
    • pp.67-76
    • /
    • 2024
  • Recent advances in text-to-speech (TTS) technology have significantly improved the quality of synthesized speech, reaching a level where it can closely imitate natural human speech. Especially, TTS models offering various voice characteristics and personalized speech, are widely utilized in fields such as artificial intelligence (AI) tutors, advertising, and video dubbing. Accordingly, in this paper, we propose a one-shot multi-speaker TTS system that can ensure acoustic diversity and synthesize personalized voice by generating speech using unseen target speakers' utterances. The proposed model integrates a speaker encoder into a TTS model consisting of the FastSpeech2 acoustic model and the HiFi-GAN vocoder. The speaker encoder, based on the pre-trained RawNet3, extracts speaker-specific voice features. Furthermore, the proposed approach not only includes an English one-shot multi-speaker TTS but also introduces a Korean one-shot multi-speaker TTS. We evaluate naturalness and speaker similarity of the generated speech using objective and subjective metrics. In the subjective evaluation, the proposed Korean one-shot multi-speaker TTS obtained naturalness mean opinion score (NMOS) of 3.36 and similarity MOS (SMOS) of 3.16. The objective evaluation of the proposed English and Korean one-shot multi-speaker TTS showed a prediction MOS (P-MOS) of 2.54 and 3.74, respectively. These results indicate that the performance of our proposed model is improved over the baseline models in terms of both naturalness and speaker similarity.

Automatic Detection and Classification of Rib Fractures on Thoracic CT Using Convolutional Neural Network: Accuracy and Feasibility

  • Qing-Qing Zhou;Jiashuo Wang;Wen Tang;Zhang-Chun Hu;Zi-Yi Xia;Xue-Song Li;Rongguo Zhang;Xindao Yin;Bing Zhang;Hong Zhang
    • Korean Journal of Radiology
    • /
    • v.21 no.7
    • /
    • pp.869-879
    • /
    • 2020
  • Objective: To evaluate the performance of a convolutional neural network (CNN) model that can automatically detect and classify rib fractures, and output structured reports from computed tomography (CT) images. Materials and Methods: This study included 1079 patients (median age, 55 years; men, 718) from three hospitals, between January 2011 and January 2019, who were divided into a monocentric training set (n = 876; median age, 55 years; men, 582), five multicenter/multiparameter validation sets (n = 173; median age, 59 years; men, 118) with different slice thicknesses and image pixels, and a normal control set (n = 30; median age, 53 years; men, 18). Three classifications (fresh, healing, and old fracture) combined with fracture location (corresponding CT layers) were detected automatically and delivered in a structured report. Precision, recall, and F1-score were selected as metrics to measure the optimum CNN model. Detection/diagnosis time, precision, and sensitivity were employed to compare the diagnostic efficiency of the structured report and that of experienced radiologists. Results: A total of 25054 annotations (fresh fracture, 10089; healing fracture, 10922; old fracture, 4043) were labelled for training (18584) and validation (6470). The detection efficiency was higher for fresh fractures and healing fractures than for old fractures (F1-scores, 0.849, 0.856, 0.770, respectively, p = 0.023 for each), and the robustness of the model was good in the five multicenter/multiparameter validation sets (all mean F1-scores > 0.8 except validation set 5 [512 x 512 pixels; F1-score = 0.757]). The precision of the five radiologists improved from 80.3% to 91.1%, and the sensitivity increased from 62.4% to 86.3% with artificial intelligence-assisted diagnosis. On average, the diagnosis time of the radiologists was reduced by 73.9 seconds. Conclusion: Our CNN model for automatic rib fracture detection could assist radiologists in improving diagnostic efficiency, reducing diagnosis time and radiologists' workload.

A study on accident prevention AI system based on estimation of bus passengers' intentions (시내버스 승하차 의도분석 기반 사고방지 AI 시스템 연구)

  • Seonghwan Park;Sunoh Byun;Junghoon Park
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.57-66
    • /
    • 2023
  • In this paper, we present a study on an AI-based system utilizing the CCTV system within city buses to predict the intentions of boarding and alighting passengers, with the aim of preventing accidents. The proposed system employs the YOLOv7 Pose model to detect passengers, while utilizing an LSTM model to predict intentions of tracked passengers. The system can be installed on the bus's CCTV terminals, allowing for real-time visual confirmation of passengers' intentions throughout driving. It also provides alerts to the driver, mitigating potential accidents during passenger transitions. Test results show accuracy rates of 0.81 for analyzing boarding intentions and 0.79 for predicting alighting intentions onboard. To ensure real-time performance, we verified that a minimum of 5 frames per second analysis is achievable in a GPU environment. his algorithm enhance the safety of passenger transitions during bus operations. In the future, with improved hardware specifications and abundant data collection, the system's expansion into various safety-related metrics is promising. This algorithm is anticipated to play a pivotal role in ensuring safety when autonomous driving becomes commercialized. Additionally, its applicability could extend to other modes of public transportation, such as subways and all forms of mass transit, contributing to the overall safety of public transportation systems.

Correct Closure of the Left Atrial Appendage Reduces Stagnant Blood Flow and the Risk of Thrombus Formation: A Proof-of-Concept Experimental Study Using 4D Flow Magnetic Resonance Imaging

  • Min Jae Cha;Don-Gwan An;Minsoo Kang;Hyue Mee Kim;Sang-Wook Kim;Iksung Cho;Joonhwa Hong;Hyewon Choi;Jee-Hyun Cho;Seung Yong Shin;Simon Song
    • Korean Journal of Radiology
    • /
    • v.24 no.7
    • /
    • pp.647-659
    • /
    • 2023
  • Objective: The study was conducted to investigate the effect of correct occlusion of the left atrial appendage (LAA) on intracardiac blood flow and thrombus formation in patients with atrial fibrillation (AF) using four-dimensional (4D) flow magnetic resonance imaging (MRI) and three-dimensional (3D)-printed phantoms. Materials and Methods: Three life-sized 3D-printed left atrium (LA) phantoms, including a pre-occlusion (i.e., before the occlusion procedure) model and correctly and incorrectly occluded post-procedural models, were constructed based on cardiac computed tomography images from an 86-year-old male with long-standing persistent AF. A custom-made closed-loop flow circuit was set up, and pulsatile simulated pulmonary venous flow was delivered by a pump. 4D flow MRI was performed using a 3T scanner, and the images were analyzed using MATLAB-based software (R2020b; Mathworks). Flow metrics associated with blood stasis and thrombogenicity, such as the volume of stasis defined by the velocity threshold ($\left|\vec{V}\right|$ < 3 cm/s), surface-and-time-averaged wall shear stress (WSS), and endothelial cell activation potential (ECAP), were analyzed and compared among the three LA phantom models. Results: Different spatial distributions, orientations, and magnitudes of LA flow were directly visualized within the three LA phantoms using 4D flow MRI. The time-averaged volume and its ratio to the corresponding entire volume of LA flow stasis were consistently reduced in the correctly occluded model (70.82 mL and 39.0%, respectively), followed by the incorrectly occluded (73.17 mL and 39.0%, respectively) and pre-occlusion (79.11 mL and 39.7%, respectively) models. The surfaceand-time-averaged WSS and ECAP were also lowest in the correctly occluded model (0.048 Pa and 4.004 Pa-1, respectively), followed by the incorrectly occluded (0.059 Pa and 4.792 Pa-1, respectively) and pre-occlusion (0.072 Pa and 5.861 Pa-1, respectively) models. Conclusion: These findings suggest that a correctly occluded LAA leads to the greatest reduction in LA flow stasis and thrombogenicity, presenting a tentative procedural goal to maximize clinical benefits in patients with AF.

Reduction of Radiation Dose to Eye Lens in Cerebral 3D Rotational Angiography Using Head Off-Centering by Table Height Adjustment: A Prospective Study

  • Jae-Chan Ryu;Jong-Tae Yoon;Byung Jun Kim;Mi Hyeon Kim;Eun Ji Moon;Pae Sun Suh;Yun Hwa Roh;Hye Hyeon Moon;Boseong Kwon;Deok Hee Lee;Yunsun Song
    • Korean Journal of Radiology
    • /
    • v.24 no.7
    • /
    • pp.681-689
    • /
    • 2023
  • Objective: Three-dimensional rotational angiography (3D-RA) is increasingly used for the evaluation of intracranial aneurysms (IAs); however, radiation exposure to the lens is a concern. We investigated the effect of head off-centering by adjusting table height on the lens dose during 3D-RA and its feasibility in patient examination. Materials and Methods: The effect of head off-centering during 3D-RA on the lens radiation dose at various table heights was investigated using a RANDO head phantom (Alderson Research Labs). We prospectively enrolled 20 patients (58.0 ± 9.4 years) with IAs who were scheduled to undergo bilateral 3D-RA. In all patients' 3D-RA, the lens dose-reduction protocol involving elevation of the examination table was applied to one internal carotid artery, and the conventional protocol was applied to the other. The lens dose was measured using photoluminescent glass dosimeters (GD-352M, AGC Techno Glass Co., LTD), and radiation dose metrics were compared between the two protocols. Image quality was quantitatively analyzed using source images for image noise, signal-to-noise ratio, and contrast-to-noise ratio. Additionally, three reviewers qualitatively assessed the image quality using a five-point Likert scale. Results: The phantom study showed that the lens dose was reduced by an average of 38% per 1 cm increase in table height. In the patient study, the dose-reduction protocol (elevating the table height by an average of 2.3 cm) led to an 83% reduction in the median dose from 4.65 mGy to 0.79 mGy (P < 0.001). There were no significant differences between dose-reduction and conventional protocols in the kerma area product (7.34 vs. 7.40 Gy·cm2, P = 0.892), air kerma (75.7 vs. 75.1 mGy, P = 0.872), and image quality. Conclusion: The lens radiation dose was significantly affected by table height adjustment during 3D-RA. Intentional head off-centering by elevation of the table is a simple and effective way to reduce the lens dose in clinical practice.

Comparative Study between ZOOMit and Conventional Intravoxel Incoherent Motion MRI for Assessing Parotid Gland Abnormalities in Patients with Early- or Mid-Stage Sjögren's Syndrome

  • Qing-Qing Zhou;Wei Zhang;Yu-Sheng Yu;Hong-Yan Li;Liang Wei;Xue-Song Li;Zhen-Zhen He;Hong Zhang
    • Korean Journal of Radiology
    • /
    • v.23 no.4
    • /
    • pp.455-465
    • /
    • 2022
  • Objective: To compare the reproducibility and performance of quantitative metrics between ZOOMit and conventional intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) in the diagnosis of early- and mid-stage Sjögren's syndrome (SS). Materials and Methods: Twenty-two patients (mean age ± standard deviation, 52.0 ± 10.8 years; male:female, 2:20) with early- or mid-stage SS and 20 healthy controls (46.9 ± 14.6 years; male:female, 7:13) were prospectively enrolled in our study. ZOOMit IVIM and conventional IVIM MRI were performed simultaneously in all individuals using a 3T scanner. Quantitative IVIM parameters - including tissue diffusivity (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) - inter- and intra-observer reproducibility in measuring these parameters, and their ability to distinguish patients with SS from healthy individuals were assessed and compared between ZOOMit IVIM and conventional IVIM methods, appropriately. MR gland nodular grade (MRG) was also examined. Results: Inter- and intra-observer reproducibility was better with ZOOMit imaging than with conventional IVIM imaging (ZOOMit vs. conventional, intraclass correlation coefficient of 0.897-0.941 vs. 0.667-0.782 for inter-observer reproducibility and 0.891-0.968 vs. 0.814-0.853 for intra-observer reproducibility). Significant differences in ZOOMit f, ZOOMit D*, D*, conventional D*, and MRG between patients with SS and healthy individuals (all p < 0.05) were observed. ZOOMit D* outperformed conventional D* in diagnosing early- and mid-stage SS (area under receiver operating curve, 0.867 and 0.658, respectively; p = 0.002). The combination of ZOOMit D*, MRG, and ZOOMit f as a new diagnostic index for SS, increased diagnostic area under the curve to 0.961, which was higher than that of any single parameter (all p < 0.01). Conclusion: Considering its better reproducibility and performance, ZOOMit IVIM may be preferred over conventional IVIM MRI, and may subsequently improve the ability to diagnose early- and mid-stage SS.

Performance Evaluation and Analysis on Single and Multi-Network Virtualization Systems with Virtio and SR-IOV (가상화 시스템에서 Virtio와 SR-IOV 적용에 대한 단일 및 다중 네트워크 성능 평가 및 분석)

  • Jaehak Lee;Jongbeom Lim;Heonchang Yu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.48-59
    • /
    • 2024
  • As functions that support virtualization on their own in hardware are developed, user applications having various workloads are operating efficiently in the virtualization system. SR-IOV is a virtualization support function that takes direct access to PCI devices, thus giving a high I/O performance by minimizing the need for hypervisor or operating system interventions. With SR-IOV, network I/O acceleration can be realized in virtualization systems that have relatively long I/O paths compared to bare-metal systems and frequent context switches between the user area and kernel area. To take performance advantages of SR-IOV, network resource management policies that can derive optimal network performance when SR-IOV is applied to an instance such as a virtual machine(VM) or container are being actively studied.This paper evaluates and analyzes the network performance of SR-IOV implementing I/O acceleration is compared with Virtio in terms of 1) network delay, 2) network throughput, 3) network fairness, 4) performance interference, and 5) multi-network. The contributions of this paper are as follows. First, the network I/O process of Virtio and SR-IOV was clearly explained in the virtualization system, and second, the evaluation results of the network performance of Virtio and SR-IOV were analyzed based on various performance metrics. Third, the system overhead and the possibility of optimization for the SR-IOV network in a virtualization system with high VM density were experimentally confirmed. The experimental results and analysis of the paper are expected to be referenced in the network resource management policy for virtualization systems that operate network-intensive services such as smart factories, connected cars, deep learning inference models, and crowdsourcing.

Selection of Evaluation Metrics for Grading Autonomous Driving Car Judgment Abilities Based on Driving Simulator (드라이빙 시뮬레이터 기반 자율주행차 판단능력 등급화를 위한 평가지표 선정)

  • Oh, Min Jong;Jin, Eun Ju;Han, Mi Seon;Park, Je Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.63-73
    • /
    • 2024
  • Autonomous vehicles at Levels 3 to 5, currently under global research and development, seek to replace the driver's perception, judgment, and control processes with various sensors integrated into the vehicle. This integration enables artificial intelligence to autonomously perform the majority of driving tasks. However, autonomous vehicles currently obtain temporary driving permits, allowing them to operate on roads if they meet minimum criteria for autonomous judgment abilities set by individual countries. When autonomous vehicles become more widespread in the future, it is anticipated that buyers may not have high confidence in the ability of these vehicles to avoid hazardous situations due to the limitations of temporary driving permits. In this study, we propose a method for grading the judgment abilities of autonomous vehicles based on a driving simulator experiment comparing and evaluating drivers' abilities to avoid hazardous situations. The goal is to derive evaluation criteria that allow for grading based on specific scenarios and to propose a framework for grading autonomous vehicles. Thirty adults (25 males and 5 females) participated in the driving simulator experiment. The analysis of the experimental results involved K-means cluster analysis and independent sample t-tests, confirming the possibility of classifying the judgment abilities of autonomous vehicles and the statistical significance of such classifications. Enhancing confidence in the risk-avoidance capabilities of autonomous vehicles in future hazardous situations could be a significant contribution of this research.

Assessment of the Application Status of Transcutaneous/Percutaneous Vagus Nerve Stimulation for Musculoskeletal Pain: A Scoping Review for Utilization in Korean Medicine and Subsequent Research (경피적 미주 신경 자극술의 근골격계 통증에 대한 적용 현황 파악: 한의학적 활용 및 후속 연구를 위한 Scoping Review)

  • Gun Hee Bae;Jeong Hoon Ahn;Dong Jin Jang;Jeong Hee Noh;Jae Kwon Shin;Eun Seok Jin;Sun Kyu Yeom;Seung Ju Oh
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.34 no.1
    • /
    • pp.65-81
    • /
    • 2024
  • Objectives This study aimed to understand the general research trends, applicated disease, and methodology of transcutaneous/percutaneous vagus nerve stimulation, contemplating its clinical use in traditional Korean medicine and future research directions. Methods A scoping review was conducted following Arksey and O'Malley Framework Stage and adhering to the PRISMA extension for scoping reviews: checklist and explanation. Papers published until October 30, 2023, were investigated across 10 databases (PubMed, Embase, Scopus, Web of Science, China National Knowledge Infrastructure, Oriental Medicine Advanced Searching Integrated System, Korean Studies Information Service System, KMbase, Science ON, Research Information Sharing Service. The search terms used were 'Transcutaneous/Percutaneous vagus nerve stimulation'. Results Since 2021, the application of transcutaneous/percutaneous vagus nerve stimulation for musculoskeletal symptoms has been actively researched, predominantly in Asia (37%), Europe (37%), and North America (21%). All 19 papers were part of clinical studies. Chronic pain was noted that most applied disease, it also was found to potentially aid in acute post-surgical pain relief. Major assessment tools include not only simple pain metrics but also pain perception, vagal nerve tension, quality of life, and inflammatory markers. Most procedures were carried out through the ear, which offers a favorable site for therapeutic stimulation without notable side effects. And parameter analysis, frequencies typically ranged around 25 Hz to 30 Hz, while pulse widths were commonly set at 250 ㎲ or 300 ㎲. Conclusions Transcutaneous/percutaneous vagus nerve stimulation is easily accessible through acupuncture in Korean medicine. Therefore, if future studies establish parameters and clinical significance, it could be utilized as a therapeutic modality.