• Title/Summary/Keyword: metric tools

Search Result 27, Processing Time 0.024 seconds

Selection Method of Software Metrics and Metric Tools using Model-Based Selection Criteria (모델 기반 선택 기준을 이용한 소프트웨어 메트릭 및 도구 선택 방법)

  • Song, Dong Hun;Seo, Yongjin;Kim, Hyeon Soo
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.1
    • /
    • pp.46-52
    • /
    • 2018
  • Software metrics as a way to evaluate software play a significant role in reducing software development costs and improving quality. However, the emergence of various software metrics creates the problem that the user must select the correct metric. Various strategies have been studied to solve this problem. However, existing studies still have difficulties in selecting metrics by requiring high user interventions. Therefore, in this paper, we propose a method that helps to select the right metric and the metric tools by using their various characteristics as selection criteria, instead of using weighted expressions to minimize user intervention.

Development of Metric Analysis Module for Railway Signaling Software (열차제어시스템 소프트웨어 Metric 분석 자동화도구 개발)

  • Hwang, Jong-Gyu;Jo, Hyun-Jeong;Jeong, Eui-Jeong;Kim, Yong-Gyu
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1257-1263
    • /
    • 2008
  • Recent advances in embedded system technology have brought more dependence on automating train control. While much efforts have been reported to improve electronic hardware's safety, not so much systematic approaches to evaluate software's safety, especially for the vital software running on board train controllers. In this paper, we have developed a software testing tool to evaluate train control system software safety, expecially "Metric Analysis" module. We have reviewed requirements in the international standards and surveyed available tools in the market. From this, we identified the S/W metric analysis module is required for software evaluation. So we have developed S/W metric analysis module for railway signaling systems.

  • PDF

A Study on the Development of DevSecOps through the Combination of Open Source Vulnerability Scanning Tools and the Design of Security Metrics (오픈소스 취약점 점검 도구 및 종합 보안 메트릭 설계를 통한 DevSecOps 구축방안 연구)

  • Yeonghae Choi;Hyeongjun Noh;Seongyun Cho;Hanseong Kang;Dongwan Kim;Suhyun Park;Minjae Cho;Juhyung Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.4
    • /
    • pp.699-707
    • /
    • 2023
  • DevSecOps is a concept that adds security procedures to the operational procedures of DevOps to respond to the short development and operation cycle. Multi-step vulnerability scanning process should be considered to provide reliable security while supporting rapid development and deployment cycle in DevSecOps. Many open-source vulnerability scanning tools available can be used for each stage of scanning, but there are difficulties in evaluating the security level and identifying the importance of information in integrated operation due to the various functions supported by the tools and different security results. This paper proposes an integrated security metric design plan for scurity results and the combination of open-source scanning tools that can be used in security stage when building the open-source based DevSecOps system.

ON CLASSES OF RATIONAL RESOLVING SETS OF POWER OF A PATH

  • JAYALAKSHMI, M.;PADMA, M.M.
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.689-701
    • /
    • 2021
  • The purpose of this paper is to optimize the number of source places required for the unique representation of the destination using the tools of graph theory. A subset S of vertices of a graph G is called a rational resolving set of G if for each pair u, v ∈ V - S, there is a vertex s ∈ S such that d(u/s) ≠ d(v/s), where d(x/s) denotes the mean of the distances from the vertex s to all those y ∈ N[x]. A rational resolving set is called minimal rational resolving set if no proper subset of it is a rational resolving set. In this paper we study varieties of minimal rational resolving sets defined on the basis of its complements and compute the minimum and maximum cardinality of such sets, respectively called as lower and upper rational metric dimensions for power of a path Pn analysing various possibilities.

Development of a Functional Complexity Reduction Concept of MMIS for Innovative SMRs

  • Gyan, Philip Kweku;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.69-81
    • /
    • 2021
  • The human performance issues and increased automation issues in advanced Small Modular Reactors (SMRs) are critical to numerous stakeholders in the nuclear industry, due to the undesirable implications targeting the Man Machine Interface Systems (MMIS) complexity of (Generation IV) SMRs. It is imperative that the design of future SMRs must address these problems. Nowadays, Multi Agent Systems (MAS) are used in the industrial sector to solve multiple complex problems; therefore incorporating this technology in the proposed innovative SMR (I-SMR) design will contribute greatly in the decision making process during plant operations, also reduce the number MCR operating crew and human errors. However, it is speculated that an increased level of complexity will be introduced. Prior to achieving the objectives of this research, the tools used to analyze the system for complexity reduction, are the McCabe's Cyclomatic complexity metric and the Henry-Kafura Information Flow metric. In this research, the systems engineering approach is used to guide the engineering process of complexity reduction concept of the system in its entirety.

Error Identification and Compensation for NC Machine Tools Using the Reference Artifact (기준물을 이용한 NC 공작기계의 오차규명 및 보상제어)

  • 정성종
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.102-111
    • /
    • 2000
  • Methodology of volumetric error identification and compensation is presented to improve the accuracy of NC machine tools by using a reference artifact and a touch trigger probe. Homogeneous transformation matrix and kinematic chain are used for modeling the geo-metric and thermal errors of a three-axis vertical machining center. The reference artifact is designed and fabricated to identify the model parameters by machine tool metrology. Parameters in the error model are able to be identified and updated by direct measurement of the reference artifact on the machine tool under the actual conditions which include the thermal interactions of error sources. A volumetric error compensation system based on IBM/PC is linked with a FANUC CNC controller to compensate for the identified volumetric error in machining workspace.

  • PDF

Metric based Performance Measurement of Software Development Methodologies from Traditional to DevOps Automation Culture

  • Poonam Narang;Pooja Mittal
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.107-114
    • /
    • 2023
  • Successful implementations of DevOps practices significantly improvise software efficiency, collaboration and security. Most of the organizations are adopting DevOps for faster and quality software delivery. DevOps brings development and operation teams together to overcome all kind of communication gaps responsible for software failures. It relies on different sets of alternative tools to automate the tasks of continuous integration, testing, delivery, deployment and monitoring. Although DevOps is followed for being very reliable and responsible environment for quality software delivery yet it lacks many quantifiable aspects to prove it on the top of other traditional and agile development methods. This research evaluates quantitative performance of DevOps and traditional/ agile development methods based on software metrics. This research includes three sample projects or code repositories to quantify the results and for DevOps integrated selective tool chain; current research considers our earlier proposed and implemented DevOps hybrid model of integrated automation tools. For result discussion and validation, tabular and graphical comparisons have also been included to retrieve best performer model. This comparative and evaluative research will be of much advantage to our young researchers/ students to get well versed with automotive environment of DevOps, latest emerging buzzword of development industries.

Load Balancing for Zone Routing Protocol to Support QoS in Ad Hoc Network

  • Chimmanee, Sanon;Wipusitwarakun, Komwut;Runggeratigul, Suwan
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1685-1688
    • /
    • 2002
  • Application Routing Load Balancing (ARLB) is a novel load balancing mode that combines QoS routing and load balancing in per application to support QoS far real-time application based on wired network. Zone Routing Protocol (ZRP) is a recent hybrid proactive/reactive routing approach in an attempt to achieve scalability of ad-hoc network. This routing approach has the potential to be efficient in the generation of control traffic than traditional routing schemes. Up to now, without proper load balancing tools, the ZRP can actually guarantee QoS for delay-sensitive applications when congestion occurred in ad-hoc network. In this paper, we propose the ARLB to improve QoS fur delay-sensitive applications based on ZRP in ad-hoc network when congestion occurred and to be forwarding mechanism fur route coupling to support QoS for real-time applications. The critical point is that the routing metric of ARLB is originally designed for wired network environment. Therefore, we study and present an appropriate metric or cost computation routing of ARLB for recently proposed ZRP over ad-hoc network environment.

  • PDF

Analysis of Relationship between Objective Performance Measurement and 3D Visual Discomfort in Depth Map Upsampling (깊이맵 업샘플링 방법의 객관적 성능 측정과 3D 시각적 피로도의 관계 분석)

  • Gil, Jong In;Mahmoudpour, Saeed;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.19 no.1
    • /
    • pp.31-43
    • /
    • 2014
  • A depth map is an important component for stereoscopic image generation. Since the depth map acquired from a depth camera has a low resolution, upsamling a low-resolution depth map to a high-resolution one has been studied past decades. Upsampling methods are evaluated by objective evaluation tools such as PSNR, Sharpness Degree, Blur Metric. As well, the subjective quality is compared using virtual views generated by DIBR (depth image based rendering). However, works on the analysis of the relation between depth map upsampling and stereoscopic images are relatively few. In this paper, we investigate the relationship between subjective evaluation of stereoscopic images and objective performance of upsampling methods using cross correlation and linear regression. Experimental results demonstrate that the correlation of edge PSNR and visual fatigue is the highest and the blur metric has lowest correlation. Further, from the linear regression, we found relative weights of objective measurements. Further we introduce a formulae that can estimate 3D performance of conventional or new upsampling methods.