• Title/Summary/Keyword: methyl jasmonate

Search Result 109, Processing Time 0.029 seconds

Increasement of antioxidative activity in Codonopsis lanceolata adventitious root treated by Methyl jasmonate and salicylic acid (Methyl Jasmonate 및 Salicylic Acid 처리에 의한 더덕(Codonopsis lanceolata) 부정근의 항산화 활성 증가)

  • Hwang, Hyun-Jung;Song, Gwanpill;Kim, Mi-Hyang;Do, Seon-Gil;Bae, Kee-Hwa
    • Journal of Plant Biotechnology
    • /
    • v.40 no.3
    • /
    • pp.178-183
    • /
    • 2013
  • Traditionally, Codonopsis lanceolata root have been used as a source of natural heath food. This study was initiated to investigate the impacts of methyl jasmonate (MeJA) and salicylic acid (SA) on adventitious growth C. lanceolata, the production of secondary metabolites, such as flavonoids, total phenolic compound, antioxidative activity (DPPH). The highest phenolics content was observed in treatment of 20 uM MeJA (74.53 mg/g). The content of total flavonoids followed the similar pattern as that of total phenolics, showing 38.45 mg/g of C. lanceolata treated by 20 uM MeJA. The DPPH scavenging activity was 24.2 ($IC_{50}$) of C. lanceolata treated by 20 uM MeJA. These results provide useful information for enhancing biological properties of cultural roots of C. lanceolata.

Differential Induction of Protein Expression and Benzophenanthridine Alkaloid Accumulation in Eschscholtzia californica Suspension Cultures by Methyl Jasmonate and Yeast Extract

  • Cho, Hwa-Young;Rhee, Hong-Soon;H. Yoon, Sung-Yong;Park, Jong-Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.255-262
    • /
    • 2008
  • Methyl jasmonate (MJ) and yeast extract (YE) induce protein expression and benzophenanthridine alkaloid accumulation in Eschscholtzia californica suspension cell cultures. One hundred ${\mu}M$ MJ primarily induced dihydrosanguinarine $(509.0{\pm}7.4mg/l)$ ; 0.2g/l YE induced sanguinarine $(146.8{\pm}3.8mg/l)$ and an unknown compound. These results occur because dihydrobenzophenanthridine oxidase (DHBO) is induced by YE and not by MJ. YE and chitin (CHI) had similar effects on sanguinarine production and DHBO expression. Differential induction of secondary metabolites was shown in E. californica suspension cultures and the expression of proteins confirmed the metabolite results. Furthermore, treatment by various oligosaccharides helped us to understand the elicitation effect of YE in signal transduction pathways.

Methyl Jasmonate-mediated Enhancement of Phenylethanoid Glycoside in Callus from Abeliophyllum distichum (cultivar Okhwang1)

  • Tae-Won Jang;So-Yeon Han;Da-Yoon Lee;Seo-Yoon Park;Woo-Jin Oh;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.53-53
    • /
    • 2023
  • Abeliophyllum distichum, one of the Korean endemic plant, is a significant pharmaceutical plant resource. A. distichum with phenylethanoid glycoside can use to regulate the development of cancer, DNA damage with radicals, and the generation of inflammatory mediators. In this study, we investigated whether the biomass, content of phenylethanoid glycoside, and growth rate of callus derived from A. distichum (cultivar Okhwang1, CAD) change in the absence or presence of plant hormones (2,4-Dichlorophenoxyacetic acid; 2, 4-D and 1-Naphthaleneacetic acid; NAA). The results showed that the best biomass, the growth rate of callus, and the contents of phenylethanoid glycoside were cultivated on Murashige and Skoog (MS) growth medium fortified with 1 ppm 2,4-D + 2 ppm NAA after 4 weeks. In a further study, CAD was cultivated on MS growth medium fortified with an elicitor (Methyl Jasmonate, MeJA). The results showed that CAD turned to brown color and fragile form with the elicitor. HPLC-PDA analysis revealed that the contents of phenylethanoid glycoside in the elicitor-treated group were higher than in the elicitor-non-treated group. These results are consistent with the findings of Arano-Varela H et al.,'s study which is that acteoside production can increase after the treatment of MeJA. Therefore, this study can be used to develop an effective and sustainable production of useful substances as an alternative to plant cultivation.

  • PDF

Studies on the Production of (10-Deacetyl) Baccatin III in Cell Cultures of Taxus baccata Pendula (주목세포 배양에 의한 (10-Deacetyl) Baccatin III 생산 연구)

  • Yoo, Byoung-Sam;Moon, Won-Jong;Kim, Jean;Kim, Dong-Il;Byun, Sang-Yo
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.174-180
    • /
    • 1998
  • Enhanced production of (10-deacetyl) baccatin III and related taxanes was observed in suspension cultures of Taxus baccata Pendula. six % of initial glucose and sucrose concentration increased 10-deacetyl baccatin III production 3.5 and 2.5 times, respectively. Methyl jasmonate, as an elicitor, increased taxane production. Time course changes of taxane production after methyl jasmonate addition showed that baccatin II and 10-deacetyl baccatin III were detected first and paclitaxel, 10-deacetyl taxol and cephalomanine were produced in sequence. Feeding experiments with $500{\mu}M$ of benzoic acid increased 10-deacetyl baccatin III production 10 times. Baccatin III production was also increased 8 times by feeding of $500{\mu}M$ of lysine as a precursor.

  • PDF

Effect of Methyl Jasmonate on Ethylene Production in Mungbean Hypocotyls and Leaf Segments (녹두 하배축과 잎에서의 에틸렌 생성에 대한 Methyl Jasmonate의 효과)

  • 이규승
    • Journal of Plant Biology
    • /
    • v.37 no.4
    • /
    • pp.445-452
    • /
    • 1994
  • Effects of methyl jasmonate (MeJA) on ethylene production in mungbean (Phaseolus radiatus L.) hypocotyl and leaf segments were studied. Ethylene production in mungbean hypocotyl segments was decreased in proportion to MeJA concentrations and $450\;\mu\textrm{M}$ of MeJA showed 50% inhibitory effect. This inhibitory effect appeared after 3 h of incubation period and continued for 24 h. Inhibition of ethylene production by MeJA was due to the decrease in 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase activity. However, MeJA treatment had no effect on ACC content and ACC synthase activity. MeJA also inhibited auxin-induced ethylene production in hypocotyls. To investigate the mechanisms of the inhibitory effect of MeJA on the auxin-induced ethylene production, ACC synthase and ACC oxidase activity were examined after MeJA treatment. MeJA decreased the ACC content and ACC synthase activity as weD as ACC oxidase activity in the auxin-treated tissue. These results suggest that the inhibition of MeJA on auxin-induced ethylene production is not due to the direct inhibitory effect of MeJA on the ACC synthase, but to the inhibition of the ability of IAA to promote the synthesis of ACC synthase. In contrast, ethylene production from the detached mungbean leaves was stimulated by MeJA. The rate of ethylene production increased approximately 65% over the control after 12 h of incubation period by $4.5\;\mu\textrm{M}$ MeJA. When MeJA was applied to detached leaves along with IAA, the effect of MeJA appeared to be additive. In an effort to elucidate mechanisms of MeJA action on auxin-induced ethylene production in the leaf tissue, enzyme activities of ACC synthase and ACC oxidase were examined. MeJA stimulated ACC oxidase activity but did not affect ACC synthase activity in leaf tissue. Together, these results suggest that MeJA plays different roles in the ethylene production in the different mungbean tissues.issues.

  • PDF

Physico-chemical properties of green leaf volatiles (GLV) for ascertaining atmospheric fate and transport in fog

  • Vempati, Harsha;Vaitilingom, Mickael;Zhang, Zenghui;Liyana-Arachchi, Thilanga P.;Stevens, Christopher S.;Hung, Francisco R.;Valsaraj, Kalliat T.
    • Advances in environmental research
    • /
    • v.7 no.2
    • /
    • pp.139-159
    • /
    • 2018
  • Green Leaf Volatiles (GLVs) is a class of biogenically emitted oxygenated hydrocarbons that have been identified as a potential source of Secondary Organic Aerosols (SOA) via aqueous oxidation. The physico-chemical properties of GLVs are vital to understanding their fate and transport in the atmosphere via fog processing, but few experimental data are available. We studied the aqueous solubility, 1-octanol/water partition coefficient, and Henry's law constant ($K_H$) of five GLVs at $25^{\circ}C$: methyl jasmonate, methyl salicylate, 2-methyl-3-buten-2-ol, cis-3-hexen-1-ol, and cis-3-hexenyl acetate. Henry's law constant was also measured at temperatures and ionic strengths typical of fog. Experimental values are compared to scarcely-available literature values, as well as estimations using group and bond contribution methods, property-specific correlations and molecular dynamics simulations. From these values, the partition coefficients to the air-water interface were also calculated. The large Henry's law constant of methyl jasmonate ($8091{\pm}1121M{\cdot}atm^{-1}$) made it the most significant GLV for aqueous phase photochemistry. The HENRYWIN program's bond contribution method from the Estimation Programs Interface Suite (EPI Suite) produced the best estimate of the Henry's constant for GLVs. Estimations of 1-octanol/water partition coefficient and solubility are best when correlating an experimental value of one to find the other. Finally, the scavenging efficiency was calculated for each GLV indicating aqueous phase processing will be most important for methyl jasmonate.

Evidence for Volatile Memory in Plants: Boosting Defence Priming through the Recurrent Application of Plant Volatiles

  • Song, Geun Cheol;Ryu, Choong-Min
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.724-732
    • /
    • 2018
  • Plant defence responses to various biotic stresses via systemic acquired resistance (SAR) are induced by avirulent pathogens and chemical compounds, including certain plant hormones in volatile form, such as methyl salicylate and methyl jasmonate. SAR refers to the observation that, when a local part of a plant is exposed to elicitors, the entire plant exhibits a resistance response. In the natural environment, plants are continuously exposed to avirulent pathogens that induce SAR and volatile emissions affecting neighbouring plants as well as the plant itself. However, the underlying mechanism has not been intensively studied. In this study, we evaluated whether plants "memorise" the previous activation of plant immunity when exposed repeatedly to plant defensive volatiles such as methyl salicylate and methyl jasmonate. We hypothesised that stronger SAR responses would occur in plants treated with repeated applications of the volatile plant defence compound MeSA than in those exposed to a single or no treatment. Nicotiana benthamiana seedlings subjected to repeated applications of MeSA exhibited greater protection against Pseudomonas syringae pv. tabaci and Pectobacterium carotovorum subsp. carotovorum than the control. The increase in SAR capacity in response to repeated MeSA treatment was confirmed by analysing the defence priming of the expression of N. benthamiana Pathogenesis-Related 1a (NbPR1a) and NbPR2 by quantitative reverse-transcription PCR compared with the control. We propose the concept of plant memory of plant defence volatiles and suggest that SAR is strengthened by the repeated perception of volatile compounds in plants.

Induction of methylnissolin in the adventitious root of Astragalus by methyl jasmonate

  • Kim, Jong-Kwun;Im, Seung-Yun;Lee, Hyun-Jin;Sung, Chung-Ki
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.266.3-267
    • /
    • 2003
  • In order to induce production of methylnissolin, sterol biosyntheis inhibitor, in the adventitious root of Astragalus membranaceus the effect of methyl jasmonate(MeJ), a growth regulator of plant, was investigated. After treatment of MeJ (0$\mu\textrm{m}$, 10$\mu\textrm{m}$, 100$\mu\textrm{m}$) to the adventitious root which was harvested in the time interval of 0, 7, 14, 21, 28days and the fresh weight, dry weight and the contents methylnissolin was determined. (omitted)

  • PDF