• Title/Summary/Keyword: methoxy groups

Search Result 74, Processing Time 0.021 seconds

Photo-Alignment Using Polyimide Containing Methoxy Cinnamate Derivatives

  • Kim, Su-Young;Shin, Sung-Eui;Shin, Dong-Myung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.668-671
    • /
    • 2009
  • Photosensitive polyimide containing methoxy cinnamate derivatives as a photo-alignment layer is investigated. The anisotropy of alignment layer was induced by irradiation linearly polarized UV (LPUV). We studied the effect of the methoxy cinnamate groups on alignment LCs.

  • PDF

Chemical Modification of Sheep Hemoglobin with Methoxy-Polyethylene Glycol

  • Jeong, Seong-Tae;Byun, Si-Myung
    • BMB Reports
    • /
    • v.29 no.3
    • /
    • pp.261-265
    • /
    • 1996
  • Sheep hemoglobin (SHb) was modified with methoxy-polyethylene glycol (mPEG) to develop a potential blood substitute. mPEG has been used to decrease antigenicity and immunogenicity of foreign proteins. When the mPEG was attached to SHb, the modified hemoglobins showed decreased electrophoretic mobility on SDS-PAGE and decreased free amino groups. When the remaining free amino groups of mPEG modified SHb were determined by TNBS free amino group titration methods. about 34% of total free amino groups were modified with mPEG. This mPEG-SHb conjugate of 34% amino groups modified showed no precipitation by double immunodiffusion with polyclonal antibodies against SHb. This modified hemoglobin still has oxygen transport activity. So this antigenicity decreased hemoglobin may be used in humans as a potential blood substitute.

  • PDF

Cyclic Host Having Double Bonds as Bridging Units

  • Kyung-Soo Paek;Donald J. Cram
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.6
    • /
    • pp.568-572
    • /
    • 1989
  • Terphenyl dialdehyde 6 was obtained in 17.4% overall yield through oxidative coupling, methylation, and bisformylation reactions starting from p-cresol, and then coupled intermolecularly using McMurry reaction to give 22-membered macrocylic host 7 in 14.4% yield. In crystal structure host 7 has $C2_v$ symmetry with cis-cis configuration of two double bonds. Four methoxy groups adjacent to double bonds and the other two methoxy groups are directed opposite side, forming a cavity which can nest a guest. The cavity is filled by two inward-turned methyl groups out of four methoxy groups adjacent to double bonds. The kinetically controlled reaction mechanism leading to cis product was proposed. The cation binding properties of 7 were obtained using picrate extraction experiment from $D_2O\; into\; CDCl_3\; at\; 25^{\circ}C$. All the spherical cations (from $Li^+ to NH4^+)$ are complexed with free energies of $7.3{\pm}0.3$ kcal/mol.

Synthesis of New 2-Amino-4-methylcyano-5-methylsulfonylpyrimidine Derivatives (새로운 2-Amino-4-methylcyano-5-methylsulfonylpyrimidine 유도체들의 합성)

  • Kim, Jung-Hwan;Han, Mun-Su;Kim, Un-Ju
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.9
    • /
    • pp.728-733
    • /
    • 1995
  • The derivatives of 2-amino-4-methylcyano-5-methylsulfonylpyrimidine 6 containing chloro, methoxy, ethoxy, phenoxy, amino and anilino groups at 6-position on the pyrimidine ring were prepared from 2-amino-4-chloro-5-methylsulfonylpyrimidine derivatives 4 and tert-butylcyanoacetate. The derivatives of 2-amino-4-chloro-5-methylsulfonylpyrimidine 4 containing methoxy, ethoxy, isopropoxy, phenoxy, amino and anilino groups at 6-position on the pyrimidine ring were prepared from 2-amino-4,6-dichloro-5-methylsulfonylpyrimidine 3.

  • PDF

Synthesis of New 5-Benzyl-4-cyanomethyl-2-methylpyrimidine Derivatives (새로운 5-Benzyl-4-cyanomethyl-2-methylpyrimidine 유도체들의 합성)

  • Kim, Jung Hwan;Han, Mun Su
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.4
    • /
    • pp.249-253
    • /
    • 1996
  • The synthesis of new 5-benzyl-4-cyanomethyl-2-methylpyrimidine derivatives (5) containing chloro, methoxy, ethoxy, phenoxy and anilino groups at 6-position on the pyrimidine ring were prepared from 5-benzyl-4-chloro-2-methylpyrimidine derivatives (3) and tert-butylcyanoacetate. The derivatives of 5-benzyl-4-chloro-2-methylpyrimidine (3) containing chloro, methoxy, ethoxy, isopropoxy, phenoxy and anilino groups at 6-position on the pyrimidine ring were prepared from 5-benzyl-4,6-dichloro-2-methylpyrimidine (2).

  • PDF

A Versatile Synthesis of O-Desmethylangolensin Analogues from Methoxy-Substituted Benzoic Acids

  • Hong, Hyo Jeong;Lee, Jae In
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.6
    • /
    • pp.569-574
    • /
    • 2014
  • The synthesis of O-desmethylangolensin (O-DMA) analogues from methoxy-substituted benzoic acids was described. Treatment of methoxy-substituted benzoic acids with 2 equiv of ethyllithium afforded methoxypropiophenones, which were subsequently transformed to ethyl 2-(methoxyphenyl)propionates via 1,2-rearrangement of the methoxyphenyl group using $Pb(OAc)_4/HClO_4$ in triethyl orthoformate. After hydrolysis with KOH, the 2-(methoxyphenyl)propionic acids were reacted with di-2-pyridyl carbonate to afford 2-pyridyl 2-(methoxyphenyl)propionates, which were acylated with methoxy-substituted phenylmagnesium bromides to give methoxy-${\alpha}$-methyldesoxybenzoins. The methoxy groups of these compounds were selectively or fully demethylated using boron tribromide to give diverse O-DMA analogues in high yields.

Anti-microbial and Anti-inflammatory Activity of New 4-methoxy-3-(methoxymethyl) Phenol and (E)-N'-(5-bromo-2-methoxybenzylidene)-4-methoxy Benzohydrazide Isolated from Calotropis gigantean white

  • Manivannan, R.;Shopna, R.
    • Natural Product Sciences
    • /
    • v.23 no.1
    • /
    • pp.69-74
    • /
    • 2017
  • A new phenol and hydrazide derivatives were obtained for the first time from the C. giganteawhite by silica gel column chromatography. The structure of the isolated compounds was identified by UV, IR NMR and MS. C. gigantea was scientifically reported for several medicinal properties viz. analgesic, antimicrobial and cytotoxic. In this screening work, anti-microbial activity of test compounds was found to be active against all organisms. Additionally, anti-inflammatory activity of the test groups has reduced the thickness of edema of the hind paw compared to the control group.

UV-Cut Effects of Cotton Fabrics Treated with UV Absorbents (자외선 흡수제 처리에 의한 면직물의 자외선 차단 효과)

  • 지영숙;김상희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.5
    • /
    • pp.622-627
    • /
    • 1994
  • The purpose of this study is to investigate the adsorption rate, adsorption quantities and the UV-Cut effects of cotton fabrics treated with several UV absorbents. The result of this study were as follows: cotton fabric treated with 2,2'-dihydroxy-4- methoxy-benzophenone shows more efficient than ones treated with 4-aminobenzoic acid and 2·hydroxy-1, 4-naphthoquinone in UV absorption. This may be due to the absorption of UV light by formation of intra moleculaar hydrogen bond. The formation of hydrogen bonds between hydrogen atoms of two hydroxy groups and one oxygen atom of carboxyl group in 2, 2'-dihydroxy-4-methoxy-benzophenone would be easier than that of the other absorbents. The adsorption isotherms of 4-aminobenzoic acid and 2-hydroxy-1, 4-naphthoquinone were similar to Freundlich type, while that of 2, 2'-Dihydroxy-4-methoxy-benzophenone was Henry type. Cotton fabrics treated with Antifade MC-100 and W Cut I-2 were just alike in UV absorption, but Antifade 8001 was inferior to the others.

  • PDF

Kinetic and Theoretical Consideration of 3,4- and 3,5-Dimethoxybenzoyl Chlorides Solvolyses

  • Park, Kyoung-Ho;Kevill, Dennis N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2989-2994
    • /
    • 2013
  • The solvolysis rate constants of 3,4- (1) and 3,5-dimethoxybenzoyl (2) chlorides were measured in various pure and binary solvents at $25.0^{\circ}C$, and studied by application of the extended Grunwald-Winstein (G-W) equation, kinetic solvent isotope effect in methanolysis and activation parameters. The solvolysis of 1 was interpreted as the unimolecular pathway due to a predominant resonance effect from para-methoxy substituent like 4-methoxybenzoyl chloride (3), while that of 2 was evaluated as the dual mechanism, with unimolecular or bimolecular reaction pathway according to the character of solvent systems (high electrophilic/nucleophilic) chosen, caused by the inductive effect by two meta-methoxy substituents, no resonance one. In the solvolyses of 1 and 2 with two $-OCH_3$ groups, the resonance effect of para-methoxy substituent is more important to decide the mechanism than the inductive effect with other corresponding evidences.

Selective Cytotoxicities of Phenolic Acids in Cancer Cells (페놀산의 구조가 암세포에 대한 세포독성에 미치는 영향)

  • 한두석;오상걸;오은상
    • Toxicological Research
    • /
    • v.19 no.1
    • /
    • pp.45-50
    • /
    • 2003
  • The purpose of this study was to determine the role of substituted groups in phenolic compounds to develop an anticancer agent having strong cytotoxicity against cancer cells but weak against normal cells. The phenolic compounds used in this study were gallic acid and ferulic acid with hydroxyl and carboxyl groups, syringic acid with hydroxyl, carboxyl and methoxy groups, and pyre-gallol with hydroxyl groups. Cytotoxicities of these compounds were evaluated by MTT assay for cell viability and XTT assay for cell adhesion activity in normal human skin fibroblast (Detroit 551) and human skin melanoma (SK-MEL-3) cells. Syringic acid, gallic acid and ferulic acid decreased the cell viability and cell adhesion activity in SK-MEL-3 cells but not in Detroit 551 cells while pyrogallol decreased in both cells. The susceptibility of cell viability based on the $IC_{50}$ values of MTT assay in Detroit 551 cells was in the following order: pyrogallol > gallic acid > ferulic acid > syringic acid, while it was in SK-MEL-3 cells: Syringic acid > progallol > ferulic acid > gallic acid. These results suggest that carboxyl and methoxy groups of these compounds play an important role in selectivity of cytotoxicity in normal and cancer cells.