• 제목/요약/키워드: methanol

검색결과 6,348건 처리시간 0.03초

Biological Methanol Production by a Type II Methanotroph Methylocystis bryophila

  • Patel, Sanjay K.S.;Mardina, Primata;Kim, Sang-Yong;Lee, Jung-Kul;Kim, In-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권4호
    • /
    • pp.717-724
    • /
    • 2016
  • Methane (CH4) is the most abundant component in natural gas. To reduce its harmful environmental effect as a greenhouse gas, CH4 can be utilized as a low-cost feed for the synthesis of methanol by methanotrophs. In this study, several methanotrophs were examined for their ability to produce methanol from CH4; including Methylocella silvestris, Methylocystis bryophila, Methyloferula stellata, and Methylomonas methanica. Among these methanotrophs, M. bryophila exhibited the highest methanol production. The optimum process parameters aided in significant enhancement of methanol production up to 4.63 mM. Maximum methanol production was observed at pH 6.8, 30℃, 175 rpm, 100 mM phosphate buffer, 50 mM MgCl2 as a methanol dehydrogenase inhibitor, 50% CH4 concentration, 24 h of incubation, and 9 mg of dry cell mass ml-1 inoculum load, respectively. Optimization of the process parameters, screening of methanol dehydrogenase inhibitors, and supplementation with formate resulted in significant improvements in methanol production using M. bryophila. This report suggests, for the first time, the potential of using M. bryophila for industrial methanol production from CH4.

Enzyme Activities Related to the Methanol Oxidation of Mycobacterium sp. strain JCl DSM 3803

  • Youngtae Ro;김응빈;김영민
    • 미생물학회지
    • /
    • 제38권4호
    • /
    • pp.209-209
    • /
    • 2002
  • Mycobacterium sp. strain JCl DSM 3803 grown in methanol showed no methanol dehydrogenase or oxidase activities found in mast methylotrophic bacteria and yeasts, respectively. Even though the methanol-grown cells exhibited a little methanol-dependent oxidation by cytochrome c-dependent methanol dehydrogenase and alcohol dehydrogenase, they were not the key enzymes responsible for the methanol oxidation of the cells, in that the cells contained no c-type cytochrome and the methanol oxidizing activity from the partially purified alcohol dehydrogenase was too low, respectively. In substrate switching experiments, we found that only a catalase-peroxidase among the three types of catalase found in glucose-grown cells was highly expressed, in the methanol-grown cells and that its activity was relatively high during the exponential growth phase in Mycobacterium sp. JCl. Therefore, we propose that catalase-peroxidase is an essential enzyme responsible for the methanol metabolism directly Of indirectly in Mycobacterium sp. JCl.

외부온도가 수송용 메탄올연료전지 성능에 미치는 영향 (Effects of environmental temperature on the performance of direct methanol fuel cell for vehicles)

  • 한창화;최지선;정대승;한상훈;이중희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.176-179
    • /
    • 2009
  • The performance of direct methanol fuel cells is affected by operating conditions such as, methanol feeding temperatures, methanol concentrations, and methanol flow rates during the operation in different environmental conditions. In this study, effects of the environmental temperature on performance of direct methanol fuel cells have been investigated in order to test a applicability of direct methanol fuel cell to the vehicle. The environmental temperature (ET) was varied from $-20^{\circ}C$ to $+30^{\circ}C$. The inside fuel cell temperature (CT) during test at various operating conditions was monitored and the performance of fuel cell was measured in the I-V polarization curve. With increasing the ET, the performance of the fuel cell was significantly improved and the CT also almost linearly increased. However, at below $0^{\circ}C$ ET, the DMFC showed very poor performance and needed to control CT or methanol feeding temperature (MFT), methanol flow rate(MFR) to obtain enough power of the vehicle.

  • PDF

Rhizopus nigricans Ehrenberg의 Methanol 내성 유도 (Induction of Methanol Tolerance in Rhizopus nigricans Ehrenberg )

  • 김명희;성혜윤;김말남
    • 미생물학회지
    • /
    • 제31권4호
    • /
    • pp.306-311
    • /
    • 1993
  • 소수성 기질인 progesterone 을 수용성 반응액 속에 용해하기 위하여 사용되는 methanol 이 Rhizopus nigricans 의 성장과 progesterone 의 11.alpha.-hydroxylation 반응에 미치는 영향을 조사하고, 세포막 인지질의 불포화 지방산 함량을 증가시켜 유기용매에 대한 내성을 유도하였다. R. nigricans 의 균사체는 methanol 존재하에서 형태적인 변화를 일으켰으며, 세포막 인지질의 지방산 조성에 변화를 가져와 불포화 지방산, 특히 oleic acid 의 함량이 증가되었다. 세포의 고정화는 유기용매로부터 세포를 보호하여 progesterone 의 11-.alpha.-hydroxylation 율을 증가시켰다. 성장배지에 500.$\mu$g/l의 biotin 을 첨가하였을 때 세포막 인지질의 oleic acid 함랴이 증가되었으며 methanol 에 대한 내성이 증진되어 높은 progesterone 의 11 $\alpha$-hydroxylation 율을 얻을 수 있었다.

  • PDF

Bioactivity of the methanol extract of Excoecaria agallocha Linn.(Euphorbiaceae)

  • Rajia, S.;Alamgir, M.;Shahriar, M.;Choudhuri, M.S.K.
    • Advances in Traditional Medicine
    • /
    • 제6권2호
    • /
    • pp.102-107
    • /
    • 2006
  • The methanol extract and residual methanol fraction of Excoecaria agallocha L. (Euphorbiaceae) stem bark was investigated in this study by wheat rootlet and shoot growth inhibition, and antimicrobial bioassay. The methanol extract and residual methanol fraction showed high inhibitory effect on both the wheat rootlet (82-89%) and shoot growth (85-90%) compared to control. The methanol extract showed a better and dose related inhibition on both the rootlet and shoot growth compared to residual methanol fraction. The $IC_{50}$ value of methanol extract for rootlet and shoot were $2.88\;{\mu}g/ml$ and $2.32\;{\mu}g/ml$, and of residual methanol fraction for rootlet and shoot were $7.91\;{\mu}g/ml$ and $4.45\;{\mu}g/ml$. The methanol extract and residual methanol fraction did not show any antibacterial activity against the tested microorganisms of clinical isolates Escherichia coli, Staphylococcus aureous, Pseudomonas aeruginosa, Proteus vulgaris and Bacillus subtilis. The plant has the potential to be a source of novel cytotoxic compound(s).

Phosphate-decorated Pt Nanoparticles as Methanol-tolerant Oxygen Reduction Electrocatalyst for Direct Methanol Fuel Cells

  • Choi, Jung-goo;Ham, Kahyun;Bong, Sungyool;Lee, Jaeyoung
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권3호
    • /
    • pp.354-361
    • /
    • 2022
  • In a direct methanol fuel cell system (DMFC), one of the drawbacks is methanol crossover. Methanol from the anode passes through the membrane and enters the cathode, causing mixed potential in the cell. Only Pt-based catalysts are capable of operating as cathode for oxygen reduction reaction (ORR) in a harsh acidic condition of DMFC. However, it causes mixed potential due to high activity toward methanol oxidation reaction of Pt. To overcome this situation, developing Pt-based catalyst that has methanol tolerance is significant, by controlling reactant adsorption or reaction kinetics. Pt/C decorated with phosphate ion was prepared by modified polyol method as cathode catalyst in DMFC. Phosphate ions, bonded to the carbon of Pt/C, surround free Pt surface and block only methanol adsorption on Pt, not oxygen. It leads to the suppression of methanol oxidation in an oxygen atmosphere, resulting in high DMFC performance compared to pristine Pt/C.

Engineering of Recombinant Escherichia coli Towards Methanol Sensing Using Methylobacterium extroquens Two-component Systems

  • Selvamani, Vidhya;Ganesh, Irisappan;Chae, Sowon;Maruthamuthu, Murali kannan;Hong, Soon Ho
    • 한국미생물·생명공학회지
    • /
    • 제48권1호
    • /
    • pp.24-31
    • /
    • 2020
  • Five genes (mxbDM, mxcQE and mxaB) are responsible for the transcription of methanol oxidation genes in Methylobacterium strains. Among these, MxbDM and MxcQE constitute the two-component system (TCS) regulating methanol metabolism. In this study, we integrated the methanol-sensing domain of MxbD and MxcQ with the EnvZ/OmpR from Escherichia coli. The domain-swapping strategy resulted in chimeric histidine kinases (HK's) MxbDZ and MxcQZ AM1 containing recombinant E. coli. Real-time quantitative PCR was used to monitor OmpC expression mediated by the chimeric HK and response regulator (RR) OmpR. Further, an ompC promoter based fluorescent biosensor for sensing methanol was developed. GFP fluorescence was studied both qualitatively and quantitatively in response to environmental methanol. GFP measurement also confirmed ompC expression. Maximum fluorescence was observed at 0.05% methanol and 0.01% methanol using MxbDZ and MxcQZ AM1, respectively. Thus the chimeric HK containing E. coli were found to be highly sensitive to methanol, resulting in a rapid response making them an ideal sensor.

Water-Methanol and Water-Acetonitrile Mixture Analysis using NIR Spectral Data and Iterative Target Transform Factor Analysis

  • Na, Dae-Bok;Hur, Yun-Jeong;Park, Young-Joo;Cho, Jung-Hwan
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1289-1289
    • /
    • 2001
  • Water-methanol and water-acetonitrile mixtures are frequently used as HPLC solvent system and strong hydrogen bonding is well-known. But a detailed aspect of water-methanol and/or water-acetonitrile mixtures have not been shown with direct spectral evidence. Recently, near infrared spectroscopy and chemometric data refinery have been successfully combined in many applications. On the basis of factor analytical methods, the spectral features of water-methanol and water-acetonitrile mixtures were studied to reveal the detail of mixtures. Water-methanol and water-acetonitrile mixtures were prepared with varying concentration of each constituent and near infrared spectral data were acquired in the range of 1100-2500nm with 2-nm interval. The data matrices were analysed with ITTFA(Iterative Target Transform Factor Analysis) algorithm implemented as MATLAB codes. As a result, the concentration profiles of water, methanol and water-methanol complex were resolved and the spectra of water-methanol complexes were calculated, which cannot be acquired with pure complexes. A similar result was obtained with NIR spectral data of water-acetonitrile mixtures. Moreover, pure spectra of hydrogen-bonding complexes of water-methanol and water-acetonitrile can be computed, while any other usual physical methods cannot isolated those complexes for acquiring pure component spectra.

  • PDF

Ionic Cluster Mimic Membranes Using Ionized Cyclodextrin

  • Won Jong-Ok;Yoo Ji-Young;Kang Moon-Sung;Kang Yong-Soo
    • Macromolecular Research
    • /
    • 제14권4호
    • /
    • pp.449-455
    • /
    • 2006
  • Ionic cluster mimic, polymer electrolyte membranes were prepared using polymer composites of crosslinked poly(vinyl alcohol) (PVA) with sulfated-${\beta}$-cyclodextrins (${\beta}-CDSO_3H$) or phosphated-${\beta}$-cyclodextrins (${\beta}-CDPO(OH)_2$). When Nafion, developed for a fuel cell using low temperature, polymer electrolyte membranes, is used in a direct methanol fuel cell, it has a methanol crossover problem. The ionic inverted micellar structure formed by micro-segregation in Nafion, known as ionic cluster, is distorted in methanol aqueous solution, resulting in the significant transport of methanol through the membrane. While the ionic structure formed by the ionic sites in either ${\beta}-CDSO_3H$ or ${\beta}-CDPO(OH)_2$ in this composite membrane is maintained in methanol solution, it is expected to reduce methanol transport. Proton conductivity was found to increase in PVA membranes upon addition of ionized cyclodextrins. Methanol permeability through the PVA composite membrane containing cyclodextrins was lower than that of Nafion. It is thus concluded that the structure and fixation of ionic clusters are significant barriers to methanol crossover in direct methanol fuel cells.

Hydrogen-Atom and Charge Transfer Reactions within Acetylene/Methanol and Ethylene/Methanol Heteroclusters

  • 신동남;최창주;정경훈;정광우
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권10호
    • /
    • pp.939-943
    • /
    • 1996
  • Reactions that proceed within mixed acetylene-methanol and ethylene-methanol cluster ions were studied using an electron-impact time-of-flight mass spectrometer. When acetylene and methanol seeded in helium are expanded and ionized by electron impact, the ion abundance ratio, [CH3OH+]/[CH2OH+] shows a propensity to increase as the acetylene/methanol mixing ratio increases, indicating that the initially ionized acetylene ion transfers its charge to adjacent methanol molecules within the clusters. Investigations on the relative cluster ion intensity distributions of [CH3OH2+]/[CH3OH+] and [(CH3OH)2H+]/[CH3OH·CH2OH+] under various experimental conditions suggest that hydrogen-atom abstraction reaction of acetylene molecule with CH3OH ion is responsible for the effective formation of CH2OH ion. In ethylene/methanol clusters, the intensity ratio of [CH3OH2]/[CH3OH] increases linearly as the relative concentration of methanol decreases. The prominent ion intensities of (CH3OH)mH over (CH3OH)m-1CH2OH ions (m=1, 2, and 3) at all mixing ratios are also interpreted as a consequence of hydrogen atom transfer reaction between C2H4 and CH3OH to produce the protonated methanol cluster ions.