• Title/Summary/Keyword: methane production

Search Result 906, Processing Time 0.029 seconds

Methane Production from the Mixture of Paperboard Sludge and Sewage Sludge in an Anaerobic Treatment Process (판지슬러지와 하수슬러지를 이용한 혐기성 처리 공정에서 메탄 생산)

  • Choi, Suk Soon;Lee, Hyun Min;Jeong, Tae-Young;Yeom, Sung Ho
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.228-231
    • /
    • 2012
  • In this work, the mixture of sewage sludge incubated in an anaerobic bioreactor for 35 days and paperboard sludge was treated in a batch anaerobic digester equipped with a ultrasonicator, and methane production during the treatment was investigated. The Soluble Chemical Oxygen Demand (SCOD) increased with increasing the amplitude of ultrasonicator, which help solubilizing paperboard sludge more effectively. The optimum amplitude of ultrasonicator for the enhancing methane productivity was found to be $142.5\;{\mu}m$ and the methane production amount increased as the anaerobic digestion period became longer. In addition, the anaerobic digestion was performed with various biomass (6000, 9000 and 12000 mg/L) and methane production increased with higher cell mass. These results will be used as valuable data to enhance the methane production from anaerobic digestion of the high concentration of organic wastes containing the paperboard sludge and sewage sludge.

Methane Production from the Co-digestion of Cattle Manure and Agricultural Residues (농업부산물과 우분의 병합 소화를 통한 메탄 생산)

  • Jae Gyeong Kim;Jeong Min Heo;Xin Zhao;Jin-Kyung Hong;Eun Hea Jho
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.427-434
    • /
    • 2023
  • Large amounts of organic wastes generated in agricultural environments such as crop residues and livestock manure adversely affect the environment. Anaerobic digestion can reduce the amount of organic wastes and convert them into energy at the same time. Efforts are being made to further increase the energy conversion efficiency by using co-anaerobic digestion using two or more substrates. Tomatoes, rice straw, cattle manure, and cattle feces (CF) were used as substrates for anaerobic digestion. Each substrate was subjected to anaerobic digestion and the cumulative biochemical methane production potential was measured, and the biodegradability was calculated. Based on the methane production, CF and tomato were further used for co-anaerobic digestion at different mixing ratios. Among the CF:tomato ratios of 1:1, 1:2, and 2:1, 1:2 produced the most methane and the synergy index was greater 1 indicating that the co-digestion of CF and tomato improved the methane production. Overall, the results showed that the methane production from cattle manure can be improved using tomato residues.

Effect of Inoculum and Carbon Sources Difference on Characteristics of Anaerobic Digestion (접종원 및 탄소원의 차이가 혐기소화 특성에 미치는 영향)

  • Choi, Yong Jun;Ryu, Jeong Won;Lee, Sang Rak
    • Journal of Korea Society of Waste Management
    • /
    • v.34 no.5
    • /
    • pp.474-481
    • /
    • 2017
  • This study was conducted to investigate the effects of inoculum and carbon sources on anaerobic digestion characteristics. The treatments were combinations of inoculum (digestate of cattle manure and rumen fluid) with carbon sources (starch, cellulose, and xylan). Anaerobic digestion was performed in triplicate at $37^{\circ}C$ for 18 days at 100 rpm. Sampling was performed at 0, 1, 2, 3, 4, 5, 7, 9, 12, 15, and 18 days to measure pH, ammonia-N, volatile solids reduction, the cumulative methane content, and the cumulative methane production. There was a significant difference in methane content depending on the carbon source and there was a significant difference in pH, ammonia-N, methane production, and methane content depending on the inoculum (P < 0.05). The results of methane production were higher in the digestate of cattle manure treatment than in the rumen fluid treatment (P < 0.05). In this study, different digestive patterns depending on the type of carbon source could be used as basic research data to set the hydraulic residence time of anaerobic digestion facilities. In addition, the use of ruminal fluid as an inoculum may help accelerate the hydrolysis and acid production steps.

Abatement of Methane Production from Ruminants: Trends in the Manipulation of Rumen Fermentation

  • Kobayashi, Yasuo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.410-416
    • /
    • 2010
  • Methane emitted from ruminant livestock is regarded as a loss of feed energy and also a contributor to global warming. Methane is synthesized in the rumen as one of the hydrogen sink products that are unavoidable for efficient succession of anaerobic microbial fermentation. Various attempts have been made to reduce methane emission, mainly through rumen microbial manipulation, by the use of agents including chemicals, antibiotics and natural products such as oils, fatty acids and plant extracts. A newer approach is the development of vaccines against methanogenic bacteria. While ionophore antibiotics have been widely used due to their efficacy and affordable prices, the use of alternative natural materials is becoming more attractive due to health concerns regarding antibiotics. An important feature of a natural material that constitutes a possible alternative methane inhibitor is that the material does not reduce feed intake or digestibility but does enhance propionate that is the major hydrogen sink alternative to methane. Some implications of these approaches, as well as an introduction to antibiotic-alternative natural materials and novel approaches, are provided.

Effects of $PCO_2$ on Methane Production Rate and Matter degradation in Anaerobic Digestion (혐기성소화의 물질분해 및 메탄생성에 대한 $CO_2$ 분압의 영향)

  • 이국의;김영철;서명교
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.2
    • /
    • pp.59-66
    • /
    • 2000
  • Effects of carbon dioxide partial pressure(PCO2) on bacterial population, methane production rate and matter degradation in anaerobic digestion were investigated by using anaerobic chemostat type reactors at 35$\pm$1$^{\circ}C$, at the HRT of 7 days. At PCO2 of 0.5 atm, the specific methane production rate and specific substrate removal rate reached the maximum rates. The methane production rates in the reactors fed by mixed substrate were 26% higher than those obtained under the controlled condition. The number of acetate consuming methanogenic bacteria enumerated by the MPN(most probable number) method, decreased when PCO2 exceeded 0.7 atm. Hydrogen consuming methanogenic bacteria and homoacetogenic bacteria increased as PCO2 increased from 0.1 to 0.6 atm, however, decreased slightly at PCO2 above 0.7 atm. The number of hydrolytic bacteria, sulfate-reducing bacteria and H2-producing acetogenic bacterial were not much influenced by the change of PCO2. The potential methanogenic activity reached the maximum at PCO2 0.5 atm, however, decreased significantly when PCO2 exceeded 0.7 atm, would depend on free PCO2 concentration in solution.

  • PDF

Methane Production Using Peel-type Fruit Wastes and Sewage Sludge in Batch Anaerobic Digestion Process (껍질 형태의 과일폐기물과 하수슬러지를 이용한 회분식 혐기 소화공정에서 메탄 생산)

  • Jeong, Tae-Young;Lee, Jong Hak;Chung, Hyung-Keun;Cha, Hyung Joon;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.542-546
    • /
    • 2009
  • Methane production using the mixed organic wastes of peel-type fruit wastes from apple or orange and sewage sludge was investigated in the batch anaerobic degradation process. When apple or orange peels with sewage sludge were used as mixed substrates, higher methane production was achieved under the condition of 3 : 7 (fruit peel : sewage sludge) mixing ratio. However, above the 3 : 7 mixing ratio, the pH of mixture was decreased from 8.0 to 4.5~4.7 due to organic acid production from the fruit wastes. Subsequently, methane production was low. The results in this study could be effectively applied to the methane gas production system as a bioenergy in the mixed batch anaerobic digestion process using the peel-type fruit wastes and sewage sludge.

Characteristics of Methane Production from Piggery Manure Using Anaerobic Digestion (혐기성 소화를 통한 돈분의 메탄 생성 특성)

  • Lee, Chae-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.3
    • /
    • pp.113-120
    • /
    • 2007
  • Anaerobic batch tests were performed to evaluate the characteristics of methane production from piggery manure such as the ultimate methane yield (UMY), the kinetic constant and the maximum methane production rate. The kinetic behavior of anaerobic degradation of piggery manure was assumed as a first order reaction. The UMY, the first order kinetic constant and the maximum methane production rate were 0.27~0.44L $CH_4/gVS$, $0.161{\sim}0.280d^{-1}$ and 0.043~0.120L $CH_4/d$, respectively. Reactor of piggery manure as the self-seed source of anaerobic digestion resulted in longer acclimation time than reactors seeded with anaerobic digested sludge (ADS). But there was no little difference in the UMY between the two seed materials. The anaerobic digestion can be effective for the treatment of piggery manure containing high concentration of solids, the two-stage anaerobic digestion is, however, thought to be more effective than the traditional single one.

  • PDF

Effects of different feeding systems on ruminal fermentation, digestibility, methane emissions, and microbiota of Hanwoo steers

  • Seul Lee;Jungeun Kim;Youlchang Baek;Pilnam Seong;Jaeyong Song;Minseok Kim;Seungha Kang
    • Journal of Animal Science and Technology
    • /
    • v.65 no.6
    • /
    • pp.1270-1289
    • /
    • 2023
  • This study evaluates how different feeding systems impact ruminal fermentation, methane production, and microbiota of Hanwoo steers native to Korea. In a replicated 2 × 2 crossover design over 29 days per period, eight Hanwoo steers (507.1 ± 67.4 kg) were fed twice daily using a separate feeding (SF) system comprising separate concentrate mix and forage or total mixed rations (TMR) in a 15:85 ratio. The TMR-feeding group exhibited a considerable neutral detergent fiber digestibility increase than the SF group. However, ruminal fermentation parameters and methane production did not differ between two feeding strategies. In addition, TMR-fed steers expressed elevated Prevotellaceae family, Christensenellaceae R-7 group, and an unidentified Veillonellaceae family genus abundance in their rumen, whereas SF-fed steers were rich in the Rikenellaceae RC9 gut group, Erysipelotrichaceae UCG-004, and Succinivibrio. Through linear regression modeling, positive correlations were observed between the Shannon Diversity Index and the SF group's dry matter intake and methane production. Although feeding systems do not affect methane production, they can alter ruminal microbes. These results may guide future feeding system investigations or ruminal microbiota manipulations as a methane-mitigation practice examining different feed ingredients.

Nodal Analysis of Optimum Operating Condition on Gathering System Considering Coalbed Methane Production Characteristics (석탄층 메탄가스 생산 특성을 고려한 포집시스템 최적 운영조건 노달분석)

  • Jung, Woodong;Cho, Wonjun;Lee, Jeseol;Yu, Hyejin;Seomoon, Hyeok
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.65-73
    • /
    • 2018
  • Coalbed methane has a nonlinear desorption curve depending on the pressure, so an appropriate production system should be constructed considering this phenomenon. The capacity and specification of the coalbed methane gas production facility are determined by the gas flow rate and pressure in the coalbed, which is the external boundary condition of the system. Thus, it is essential to analyze these characteristics in gas production. The gas inflow equation was calculated using the reservoir flow model and utilized as the boundary condition of the whole production facility in this study. Also, to understand the effect of pressure drop on the gas flow in the production facility, the nodal analysis was performed using the flow analysis simulator of production equipment, and we determined the proper specifications and operating conditions of the production facility. This study presents a design criteria as to production and gathering system capable of effectively transporting coalbed methane.