• Title/Summary/Keyword: methane oxidation

Search Result 195, Processing Time 0.03 seconds

Development of composite catalyst for hazardrous gas treatment using the heat of aviary heating equipment (계사용 온풍기를 이용한 유해가스처리 복합촉매시스템 개발)

  • Jang, Hyun-Tae;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2779-2785
    • /
    • 2009
  • Among the livestock, chickens are raised because of the merit ingested protein in low-priced cost of production and are primary livestock increased the consumption of meat. The factors of influencing condition, odor is the most important factor. Odor substances are ammonia, amines, hydrogen sulfide and mercaptan which come from night soil. Livestock are prevented from rearing by means of these odor substances. Though the henhouse is heated using hot air type heater in the winter season, it is ventilated for the control of odor because of the increase of odor concentration. In the present work, composite catalytic system combined the existing facilities(hot air type heater) with catalytic system was developed, it could controled odor and hazardous gas using the oxidation/reduction reaction without extra operating cost. Moreover, the purpose of this work is to develop the catalysts which are cost competitive and can maximize energy efficiency. The catalysts are noble metal(Pt-Rh) and composite transition metal(Mn) type.

Atomic Layer Deposition for Energy Devices and Environmental Catalysts

  • Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.77.2-77.2
    • /
    • 2013
  • In this talk, I will briefly review recent results of my group related to application of atomic layer deposition (ALD) for fabricating environmental catalysts and organic solar cells. ALD was used for preparing thin films of TiO2 and NiO on mesporous silica with a mean pore size of 15 nm. Upon depositing TiO2 thin films of TiO2 using ALD, the mesoporous structure of the silica substrate was preserved to some extent. We show that efficiency for removing toluene by adsorption and catalytic oxidation is dependent of mean thickness of TiO2 deposited on silica, i.e., fine tuning of the thickness of thin film using ALD can be beneficial for preparing high-performing adsorbents and oxidation catalysts of volatile organic compound. NiO/silica system prepared by ALD was used for catalysts of chemical conversion of CO2. Here, NiO nanoparticles are well dispersed on silica and confiend in the pore, showing high catalytic activity and stability at 800oC for CO2 reforming of methane reaction. We also used ALD for surface modulation of buffer layers of organic solar cell. TiO2 and ZnO thin films were deposited on wet-chemically prepared ZnO ripple structures, and thin films with mean thickness of ~2 nm showed highest power conversion efficiency of organic solar cell. Moreover, performance of ALD-prepared organic solar cells were shown to be more stable than those without ALD. Thin films of oxides deposited on ZnO ripple buffer layer could heal defect sites of ZnO, which can act as recombination center of electrons and holes.

  • PDF

Synergy Effects of Hybrid Catalysts on Syngas Yield of Partial Oxidation of Methane (메탄의 부분산화를 통한 합성가스 제조에서의 hybrid 촉매의 영향)

  • 오영삼;백영순;이재의;목영일
    • Journal of Energy Engineering
    • /
    • v.8 no.1
    • /
    • pp.34-47
    • /
    • 1999
  • 본 연구에서는 촉매상에서 메탄의 산화시 발생되는 반응열을 이용하고 반응생성물과 미반응 메탄과의 개질반응에 의해 합성가스의 수율을 증대시키기 위하여 연소촉매와 개질촉매를 연속적으로 배치한 hybrid 촉매상에서 개질촉매에 따른 메탄의 부분산화반응의 반응 특성과 합성가스 수율에 미치는 영향을 관찰하였다. 메탄의 산화를 위해서 Pt-Rh/cordierite 촉매를 사용하였으며, 개질촉매로는 상업용 개질촉매인 R67, ICI46-1, 수성가스 전환반응촉매인 LX821 촉매와 6 wt% Ni/cordierite 촉매를 사용하였다. 실험결과 연소촉매와 개질촉매를 연속적으로 사용한 경우 메탄의 산화 과정에서 생성된 CO2 및 H2O가 미반응 메탄과의 개질반응 촉진으로 인하여 합성가스이 수율이 증가됨을 확인할 수 있었다. 이때 생성되는 합성가스의 H2/CO 몰비는 온도에 따라 감소하는 것으로 나타났으며, 80$0^{\circ}C$에서 촉매에 따라 2.2~2.8의 값을 가짐을 알 수 있었다. 개질촉매로 R67 및 Ni/cordierite 촉매를 사용하였을 경우 가장 높은 합성가스의 수율을 얻을 수 있었으며, 연소촉매와 개질촉매의 질량비는 1:1~1:2에서 가장 높은 수율의 합성가스를 얻을 수 있었다. 메탄과 산소의 몰비가 2:2에서 메탄의 전환율과 수소 수율이 가장 높게 나타났으며 메탄의 몰비 증가에 따라 감소되는 경향을 보였다.

  • PDF

Study on the Synthesis of Graphene Nanowall by Controlling Electric Field in a Radio Frequency Plasma CVD Process (RF 플라즈마 CVD 프로세스의 전계제어에 의한 그래핀 나노월 성장 연구)

  • Han, SangBo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.45-51
    • /
    • 2014
  • This work carried out for the effective synthesis characteristics of graphene nanowall film by controlling the electric field in a RF plasma CVD process. For that, the bipolar bias voltage was applied to the substrate such as Si and glass materials for the best chemical reaction of positive and negative charges existing in the plasma. For supplying the seed formation sites on substrate and removing the oxidation layer on the substrate surface, the electron bombardment into substrates was performed by a positive few voltage in hydrogen plasma. After that, hydrocarbon film, which is not a graphene nanowall, was deposited on substrates under a negative bias voltage with hydrogen and methane gases. At this step, the film on substrates could not easily identify due to its transparent characteristics. However, the transparent film was easily changed into graphene nanowall by the final hydrogen plasma treatment process. The resultant raman spectra shows the existence of significant large 2D peaks corresponding to the graphene.

Construction of Resource Recovery System for Organic Wastes (유기성 폐기물의 자원화 체제구축에 관한 연구)

  • 양재경;최경민
    • Journal of Korea Technology Innovation Society
    • /
    • v.2 no.2
    • /
    • pp.290-308
    • /
    • 1999
  • In this study a system for the treatment or recyling of organic wastes from both urban and rural area was recommended. It was developed based on the resource recovery system regarding human being by four tectnologies; forage, methane production, high-grade composting and complete decomposition. High quality compost can be produced by combining several kind of wastes produced from urban and agricultural areas. High quality compost must possess not only general characteristics of ordinary compost, but also a superior ability to improve the soil properties and must contain more nutrients for plant. Cedar chips were recommended as the main bulking agent to adjust moisture contents and air permeability. Charcoal and zeolite can be used not only as the second bulking agent but also as fertilizer for improve the soil amendment. Complete decomposition of organic wastes is defined by organic matter being completely converted to $CO_2$ and water. All the input water was evaporated by the heat produced through the oxidation of organic matter, In the present study, the complete treatments were successfully achieved for Shochu wastewater, swine wastes, thickened excess sewage sludge, wastes produced by Chinese restaurant and anaerobic digested sludge. First of all, recycling center of organic wastes should be established for the protect the environments and effective recovery of organic resources. This may means the way to derive the recovery of human value.

  • PDF

NOx Formation and Flame Structure in $CH_4/Air-CO_2$ Counterflow Diffusion Flames ($CH_4/Air-CO_2$ 대향류 확산화염의 NOx 생성 특성 및 화염구조)

  • Han, J.W.;Lee, S.R.;Lee, C.E.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.949-955
    • /
    • 2000
  • Numerical study with detailed chemistry has been conducted to investigate the NOx formation and structure in $CH_4/Air-CO_2$ counterflow diffusion flames. The importance of radiation effect is identified and the role of $CO_2$ addition is addressed to thermal and chemical reaction effects, which can be precisely specified through the introduction of an imaginary species. Also NO separation technique is utilized to distinguish the contribution of thermal and prompt NO formation mechanisms. The results are as follows : The radiation effect is dominant at low strain rates and it is intensified by $CO_2$ addition. Thermal effect mainly contributes to the changes in flame structure and the amount of NO formation but the chemical reaction effect also cannot be neglected. It is noted that flame structure is changed considerably due to the addition of $CO_2$ in such a manner that the path of methane oxidation prefers to take $CH_4 {\rightarrow}CH_3{\rightarrow}C_2H_6{\rightarrow}C_2H_5$ instead of $CH_4 {\rightarrow}CH_3{\rightarrow}CH_2{\rightarrow}CH$. At low strain rate(a=10) the reduction of thermal NO is dominant with respect to reduction rate, but that of prompt NO is dominant with respect to total amount.

  • PDF

Purification and Characterization of a Methanol Dehydrogenase Derived from Methylomicrobium sp. HG-1 Cultivated Using a Compulsory Circulation Diffusion System

  • Kim, Hee-Gon;Kim, Si-Wouk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.134-139
    • /
    • 2006
  • Methanotrophs are microorganisms that possess the unique ability to utilize methane as their sole source of carbon and energy. A novel culture system, known as the compulsory circulation diffusion system, was developed for rapid growth of methanotrophic bacteria. Methanol dehydrogenase (MDH, EC 1.1.99.8) from Methylomicrobium sp. HG-1, which belongs to the type I group of methanotrophic bacteria, can catalyze the oxidation of methanol directly into formaldehyde. This enzyme was purified 8-fold to electrophoretic homogeneity by means of a 4 step procedure and was found in the soluble fraction. The relative molecular weight of the native enzyme was estimated by gel filtration to be 120 kDa. The enzyme consisted of two identical dimers which, in turn, consisted of large and small subunits in an ${\alpha}_2{\beta}_2$ conformation. The isoelectric point was 5.4. The enzymatic activity of purified MDH was optimum at pH 9.0 and $60^{\circ}C$, and remained stable at that temperature for 20 min. MDH was able to oxidize primary alcohols from methanol to octanol and formaldehyde.

Catalytic Oxidation of Methane Using the Manganese Catalysts (망간촉매를 이용한 메탄의 산화반응)

  • Peng, Meimei;Lee, Joo-Bo;Lee, Sung-Yong;Jeong, Ui-Min;Han, Seung-Dong;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1233-1236
    • /
    • 2010
  • 본 연구에서는 메탄을 물질로 산화실험을 수행하였다. 메탄의 발화온도가 탄화수소 중에 가장 높으며, 대부분의 전이금속촉매 활성온도가 가장 높게 나타나는 물질이므로 메탄의 연소가 일어날 경우 대부분의 탄화수소류는 연소가 일어날 수 있으므로 메탄의 산화반응을 연구하였다. 메탄의 산화를 위한 전이금속 촉매중 망간을 산화물형태로 $Al_2O_3$, $TiO_2$에 담지하여 메탄에 대한 활성능을 측정하였으며, 조촉매로 금속산화물을 이용하여 활성능의 변화를 연구하였다. 또한 자연에 존재하는 천연망간광석과 금속산화물을 담지하여 최적의 메탄에 대한 활성능을 지닌 촉매를 선별하였다. 조촉매로는 Ce, Sn, Ni, Co, Mo 등을 이용하였다. 또한 본 연구에서는 촉매 제조는 과잉용액함침법을 사용하여 담지체에 촉매물질을 분산하였으며, 온도와 유량에 대한 각 조성 촉매의 활성능을 측정하여 활성화에너지 및 $T_{50}$, $T_{90}$을 도출하였다.

  • PDF

Effect of oxygen distribution for hot spot and carbon deposition minimization in a methane autothermal reforming reactor

  • Lee, Shin-Ku;Bae, Joong-Myeon;Kim, Yong-Min;Park, Joong-Uen;Lim, Sung-Kwang
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.1996-2000
    • /
    • 2008
  • In autothermal reforming reaction, oxygen to carbon ratio (OCR) and steam to carbon ratio (SCR) are significant factors, which control temperature and carbon deposition into the reactor. The OCR is more sensitive than the SCR to affect the temperature distribution and reforming efficiency. In conventional operation, hydrocarbon fuel, steam, and oxygen was homogeneously mixed and injected into the reactor in order to get hydrogen-rich gas. The temperature was abruptly raised due to fast oxidation reaction in the former part of the reactor. Deactivation of packed catalysts can be accelerated there. In the present study, therefore, the effect of the oxygen distribution is introduced and investigated to suppress the carbon deposition and to maintain the reactor in the mild operating temperature (e.g., $700{\sim}800^{\circ}C$). In order to investigate the effect numerically, the following models are adopted; heterogeneous reaction model and two-medium model for heat balance.

  • PDF

High Purity Hydrogen Production by Redox Cycle Operation (산화-환원 싸이클 조업에 의한 고순도 수소생성)

  • Jeon, Bup-Ju;Park, Ji-Hun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.355-363
    • /
    • 2010
  • High purity hydrogen, 97-99 vol.%, with CO at just ppm levels was obtained in a fixed bed of iron oxide employing the steam-iron cycle operation with reduction at 823K and oxidation in a steam-$N_2$ mixture at 773K TGA experiments indicated that temperature of the reduction step as well as its duration are important for preventing carbon build-up in iron and the intrusion of $CO_2$ into the hydrogen product. At a reduction temperature of 823K, oxide reduction by $H_2$ was considerably faster than reduction by CO. If the length of the reduction step exceeds optimal value, low levels of methane gas appeared in the off-gas. Furthermore, with longer durations of the reduction step and CO levels in the reducing gas greater than 10 vol.%, carbidization of the iron and/or carbon deposition in the bed exhibited the increasing pressure drop over the bed, eventually rendering the reactor inoperable. Reduction using a reducing gas containing 10 vol.% CO and a optimal reduction duration gave constant $H_2$ flow rates and off-gas composition over 10 redox reaction cycles.